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1 iNtroduCtioN

Meta-heuristics have been widely and suc-
cessfully applied to many different problems. 
However, significant development effort is 
often needed to produce fine tuned techniques 
for the particular problem or even instance 
that is under investigation. Hyper-heuristics 
represent an increasingly popular research 
direction in search and optimisation (Burke 

et al., 2003a; Ross, 2005; Chakhlevitch et al., 
2008; Özcan et al., 2008; Burke et al. 2009a, 
2009b). One of the aims is to at produce more 
general problem solving techniques, which can 
potentially be applied to different problems or 
instances with little development effort. The 
idea is that a hyper-heuristic approach should 
able to intelligently choose an appropriate 
low-level heuristic (from a given repository 
of heuristics) to be applied at any given time. 
Thus, in hyper-heuristics, we are interested in 
adaptively finding solution methods, rather than 
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directly producing a solution for whichever 
search problem we are studying.

Several hyper-heuristics approaches have 
been proposed in the literature. It is possible 
to consider methodologies based on perturba-
tion low-level heuristics and those based on 
construction low-level heuristics. The latter 
type builds a solution incrementally, starting 
with a blank solution and using construction 
heuristics to gradually build a complete solution. 
They have been successfully investigated for 
several combinatorial optimisation problems 
such as: bin-packing (Tereshima-Marin et al., 
2007), timetabling (Terashima-Marin et al., 
1999; Burke et al., 2007, Qu et al., 2008), pro-
duction scheduling (Vazquez-Rodriguez et al., 
2007), and cutting stock (Terashima-Marin et 
al., 2005). On the other hand, approaches based 
on perturbation heuristics find a reasonable 
initial solution by some straightforward means 
(either randomly or using a simple construction 
heuristic) and then use heuristics, such as shift 
and swap to perturb solution components with 
the aim of finding improved solutions. In other 
words, they start from a complete solution and 
then search or select among a set of neighbour-
hoods for better solutions. A class of the most 
commonly used hyper-heuristics based on per-
turbation (improvement) low level heuristics is 
the choice hyper-heuristics (heuristic selection 
methodologies). They have been applied to real 
world problems, such as, personnel scheduling 
(Cowling et al., 2001; Burke et al., 2003b), 
timetabling (Burke et al., 2003b; Dowsland et 
al., 2007), and vehicle routing problems (Pis-
inger et al., 2007). In a choice hyper-heuristic 
framework based on perturbation low level 
heuristics, search is mostly performed using a 
single candidate solution. Such hyper-heuristics, 
iteratively, attempt to improve a given solution 
throughout two consecutive phases: heuristic 
selection and move acceptance as illustrated 
in Figure 1.

In Figure 1, a candidate solution (St) at a 
given time (t) is modified into a new solution 
(or solutions) using a chosen heuristic (or 
heuristics). Then, a move acceptance method 
is employed to decide whether to accept or 

reject a resultant solution (Rt). This process is 
repeated until a predefined stopping condition 
is met. Only problem independent information 
flow is allowed between the problem domain 
and hyper-heuristic layers. Unless, we specifi-
cally say otherwise, a choice hyper-heuristic 
refers to a hyper-heuristic that operates on a set 
of perturbation low level heuristics from this 
point onwards. Moreover, such a hyper-heuristic 
will be denoted as heuristic selection − move 
acceptance based on its components.

Great deluge is a well-known acceptance 
strategy (Dueck, 1993; Burke et al., 2003). Bil-
gin et al. (2007) reported that hyper-heuristics 
formed by different combinations of heuristic 
selection and move acceptance methods might 
yield different performances. Moreover, simple 
random−great deluge delivered a similar per-
formance to the best approach; namely, choice 
function – simulated annealing for examination 
timetabling. Obviously, simple random receives 
no feedback at all during the search to improve 
upon the heuristic selection process. Hence, in 
this study, great-deluge is preferred as the move 
acceptance component within a choice hyper-
heuristic framework to investigate the effect 
of learning heuristic selection on its overall 
performance for solving the same examination 
timetabling problem as formulated in Bilgin et 
al. (2007). The learning mechanisms, inspired 
by the work by Nareyek (2003), are based on 
weight adaptation.

2 hyper-heuristics and learning

Although hyper-heuristic as a term has been 
introduced recently (Denzinger et al., 1997), the 
origins of the idea date back to the early 1960s 
(Fisher et al., 1961). A hyper-heuristic operates 
at a high level by managing or generating low 
level heuristics which operate on the problem 
domain. Meta-heuristics have been commonly 
used as hyper-heuristics. A hyper-heuristic can 
conduct a single point or multi-point search. 
Population based meta-heuristics which per-
form multi-point search, such as learning classi-
fier systems (Marín-Blázquez and Schulenburg, 
2005), evolutionary algorithms (Cowling et al., 
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2002; Han et al., 2003; Pillay and Banzhaf, 
2008), genetic programming (Keller et al., 2007; 
Burke et al., 2009a), ant colony optimisation 
(Cuesta-Canada et al., 2005; Chen et al., 2007) 
have been applied to a variety of combinato-
rial optimisation problems as hyper-heuristics. 
Distributed computing methods can also be 
used to perform multi-point search (Rattadilok 
et al., 2004; Rattadilok et al., 2005; Ouelhadj 
et al., 2008). Özcan et al. (2008) presented 
different hyper-heuristic frameworks show-
ing that a matching performance to memetic 
algorithms can be achieved. In this study, the 
choice hyper-heuristic framework as presented 
in Figure 1 is studied. The primary components 
of such hyper-heuristics are heuristic selection 
and move acceptance.

A major motivating feature of hyper-heuris-
tic research is the aim to facilitate applicability 
to different problem instances having different 
characteristics as well as different problem 
domains. With this goal in mind, machine 
learning techniques are vital for hyper-heuristics 

to make the right choices during the heuristic 
selection process. Learning can be achieved in 
an offline or online manner. An offline learning 
hyper-heuristic requires training over a set of 
problems, before it is used to solve the unseen 
problem instances. For example, Burke et al. 
(2006) use a case based reasoning system as a 
hyper-heuristic for solving course and examina-
tion timetabling problems. An online learning 
hyper-heuristic learns through the feedback 
obtained during the search process while solving 
a given problem. Most of the existing online 
learning hyper-heuristics incorporate reinforce-
ment learning (Kaelbling et al., 1996; Sutton 
et al., 1998). A reinforcement learning system 
interacts with the environment and changes 
its state via a selected action in such a way as 
to increase some notion of long term reward. 
Hence, a learning hyper-heuristic maintains a 
utility value obtained through predetermined 
reward and punishment schemes for each low 
level heuristic. A heuristic is selected based on 
the utility values of the low level heuristics in 

Figure 1. A hyper-heuristic framework based on a single point search, where St denotes a candi-
date solution at time t, Hi is the ith low level heuristic, Rt is the resultant solution after applying 
a set of selected low level heuristics that goes into the move acceptance process
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hand at each step. Remembering and forgetting 
represent core ingredients of learning. Remem-
bering can be achieved through reward and pun-
ishment schemes. Forgetting can be achieved 
through the use of lower and upper bounds on 
the utility values. Some reinforcement learning 
methods use weighted average of the learnt 
utility values. A dynamic weighting scheme 
can be employed which favours the outcome of 
the most recent actions or choices. Reward and 
punishment schemes are allowed to use different 
adaptation rates in the case of an improving and 
worsening move, respectively. For example, 
the utility value of a selected heuristic can be 
increased at a constant rate linearly whenever 
there is an improvement after it is employed, 
otherwise the utility value can be decreased at 
a different rate, or it can even be kept constant. 
Initialisation of the utility values, lower and 
upper bounds for them along with a memory 
adjustment scheme (weighting) represent the 
remainder of the constituents for a reinforce-
ment learning based hyper-heuristic.

Some previously studied heuristic selection 
methods are summarised in Table 1. Simple 
random, random gradient, random permutation 
gradient, greedy and choice function heuristic 
selection methods are presented in Cowling et 
al. (2001a). All these approaches can be con-
sidered to be learning heuristic selection meth-
ods, except simple random. In Cowling et al. 
(2001b), a parameter-free choice function was 
presented. As a problem domain, sales summit 
scheduling was used in both studies. Cowling 
and Chakhlevitch (2003) investigated peckish 
heuristic selection strategies that eliminated 
the selection and application of all low level 
heuristics as in greedy heuristic selection.

Nareyek (2003) investigated reinforcement 
learning using different reward/penalty schemes 
and heuristic selection strategies on the Orc 
Quest problem and in the logistics domain. 
Additive/subtractive adaptation rates combined 
with heuristic selection using the maximal 
utility generated better results as opposed to a 
fair random choice (softmax, roulette wheel). 
All heuristics were assigned to a utility value 
of 0 initially and raw utility values were main-

tained. Upper and lower bounds were defined 
for the utility values. In Burke et al. (2003b), 
reinforcement learning was combined with tabu 
search in a hyper-heuristic and applied to the 
personnel rostering and timetabling problems. 
The aim of this modification was to prevent 
the selection of some heuristics for a while by 
inserting them into a variable-length tabu list. 
A non-tabu heuristic with the highest utility 
value was chosen at each step.

Some studies concentrate on move ac-
ceptance in hyper-heuristics rather than upon 
heuristic selection methods, as accepting a 
move turns out to be an extremely important 
decision. In Cowling et al. (2001), heuristic 
selection methods are combined with either 
all moves accepted or with only an improving 
moves accepted strategy. On the other hand, 
Ayob and Kendall (2003) proposed three dif-
ferent Monte Carlo move acceptance strategies 
based on the objective value change due to the 
move, time (units), number of consecutive non-
improving moves. Simple random was used as 
a heuristic selection within the hyper-heuristic 
for solving the component placement problem. 
The best move acceptance turned out to be 
exponential Monte Carlo with counter. One of 
the well known move acceptance strategies is 
simulated annealing (SA) (Kirkpatrick, 1983). 
The improving moves or the moves that generate 
an equal quality solution are accepted, while a 
worsening move is not rejected immediately. 
Acceptance of a given candidate solution is 
based on a probabilistic framework that depends 
on the objective value change and a temperature 
that decreases in time (cooling). The difference 
between exponential Monte Carlo with counter 
and the simulated annealing is that the latter 
one uses this cooling schedule while the former 
does not. Bai and Kendall (2003) investigated 
the performance of a simple random – simu-
lated annealing hyper-heuristic on a shelf space 
allocation problem. Anagnostopoulos et al. 
(2006) applied a similar hyper-heuristic to a 
set of travelling tournament problem instances 
embedding a reheating scheme into the simu-
lated annealing move acceptance. In Bai et al. 
(2007a), a reinforcement learning scheme is 
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combined with simulated annealing with reheat-
ing as a hyper-heuristic and applied to three 
different problem domains: nurse rostering, 
course timetabling and 1D bin packing.

In (Dueck, 1993), two move acceptance 
strategies, namely great deluge (GD) and 
record-to-record travel that accept worsening 
moves based on a dynamic threshold value 
were presented. Kendall and Mohamad (2004) 
utilised a simple random – great deluge hyper-
heuristic to solve a mobile telecommunication 
network problem. Great deluge uses a thresh-
old that decreases in time at a given rate (e.g., 
linearly) to determine an acceptance range for 
the solution qualities based on three main pa-
rameters: (i) the maximum number of iterations 
(or total time), (ii) the number of iterations (or 
time) passed, and (iii) an expected range for the 
maximum fitness change between the initial 
and final objective value (e.g., lower bound). In 
the case of an improving move, it is accepted, 
while a worsening move is accepted only if 

the objective value of the resultant candidate 
solution is less than the computed threshold at 
a given iteration. Kendall and Mohamad (2004) 
used an iteration based threshold formula with 
a maximum number of iterations as a termina-
tion criterion aiming a quadratic running time 
for the overall algorithm.

Bilgin et al. (2007) employed different 
heuristic selection and move acceptance mecha-
nisms and used their combinations as hyper-
heuristics. The results showed that a simple 
random – great deluge hyper-heuristic was the 
second best after choice function – simulated 
annealing, considering the average performance 
of all hyper-heuristics over a set of examina-
tion timetabling problems. Consequently, a 
hyper-heuristic without learning delivered a 
comparable performance to another one with 
a learning mechanism. Therefore, in this study, 
reinforcement learning is combined with great 
deluge to observe the effect of learning heuristic 
selection on the overall performance of the 

Table 1. Description of a set of heuristic selection methods used within choice hyper-heuris-
tics 

Name Description

Simple Random Choose a low level heuristic randomly

Random Descent Choose a low level heuristic randomly and employ the same heuristic as long as the 
candidate solution in hand is improved

Random Permutation 
Descent

Generate a random permutation of low level heuristics and form a cyclic list. Starting 
from the first heuristic, employ it repeatedly until a worsening move is hit, then go 
to the next heuristic in the list.

Greedy Apply all low level heuristics to the same candidate solution separately and choose 
the heuristic that generates the best change in the objective value

Peckish Apply a subset of all low level heuristics to the same candidate solution and choose 
the heuristic that generates the best change in the objective value

Choice Function Dynamically score each heuristic weighing their individual performance, combined 
performance with the previously invoked heuristic and time passed since the last call 
to the heuristic at a given step. Then, a heuristic is chosen based on these scores.

Reinforcement Learning Each heuristic carries a utility value and heuristic selection is performed based on 
these values. This value gets updated at each step based on the success of the chosen 
heuristic. An improving move is rewarded, while a worsening move is punished using 
a preselected adaptation rate.

Tabu Search This method employs the same strategy as Reinforcement Learning and uses a tabu 
list to keep track of the heuristics causing worsening moves. A heuristic is selected 
which is not in the tabu list.
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hyper-heuristic for solving the same problem. 
All the runs during the experiments in (Bilgin 
et al., 2007) were restricted to 600 seconds; 
hence, the threshold is computed based on 
the CPU time within the great deluge move 
acceptance strategy. If a heuristic takes less 
time, then the threshold value will be lower as 
compared to the one that takes longer time. This 
hyper-heuristic differs from the one that Kendall 
and Hussin (2005) have investigated, as their 
hyper-heuristic embeds a tabu list approach to 
keep the chosen heuristic from getting selected 
again for a number of steps (tabu duration) into 
reinforcement learning as a heuristic selection. 
Moreover, the low level heuristics contained a 
mixture of thirteen different construction and 
perturbation low level heuristics.

Özcan et al. (2009) combined differ-
ent heuristic selection methods with a late 
acceptance strategy, a new method that is 
initially presented as a local search for solv-
ing examination timetabling problems. Late 
acceptance requires a single parameter and it 
is a memory based approach. A trial solution 
is compared with a previously visited solution 
at a fixed distance apart from the current step 
in contrast to the conventional approaches that 
usually compare the trial solution with a current 
one. The trial solution is accepted, if there is 
an improvement over this previously visited 
solution. The results showed that reinforcement 
learning, reinforcement learning with tabu list 
or choice function heuristic selection methods 
did not improve the performance of the hyper-
heuristic if late acceptance is used. Choosing a 
heuristic randomly at each step performed the 
best. More on hyper-heuristics can be found 
in Burke et al. (2003a), Ross (2005), Özcan et 
al. (2008), Chakhlevitch and Cowling (2008), 
Burke et al. (2009a, 2009b, 2009c).

3 the examiNatioN 
timetabliNG Problem

Examination timetabling is a challenging 
real world problem addressed by educational 
institutions. The goal is to find the best assign-

ment of available timeslots and possibly other 
resources, such as rooms for each examination 
subject to a range of constraints. There are two 
types of constraints: hard and soft constraints. 
Hard constraints must not be violated under 
any circumstances and a solution which sat-
isfies them is called a feasible solution. For 
example, a student cannot take any pair of 
his/her examinations at the same time. Soft 
constraints reflect preferences and their viola-
tion is allowed, but the goal is to minimise it. 
For example, a number of timeslots might be 
preferred in between the examinations of a 
student scheduled to the same day.

3.1 Previous work

Researchers have been studying various aspects 
of examination timetabling problems since the 
early 1960s (Cole, 1964; Broder, 1964). Exami-
nation timetabling problems are NP-complete 
(Even, 1976). Since the search space of candi-
date solutions grows exponentially with respect 
to the number examinations to be scheduled, 
many different non-traditional approaches (e.g., 
meta-heuristics) have been investigated for 
solving a variety of examination timetabling 
problems. Tables 2 and 3 provide some illustra-
tive examples of these approaches.

Many examination timetabling problems 
are studied from a practical point of view, as they 
arise due to practical needs within institutions. 
It is worth pointing out that different institutions 
have very different requirements (Burke et al., 
1996a). One consequence of this is that there is 
a variety of examination timetabling problems in 
the literature (Table 3; see Qu et al., 2009). Carter 
et al. (1996b) introduced one of the widely used 
examination timetabling data sets which was 
originally made up of 13 real world problems. 
Özcan et al. (2005) introduced an examination 
timetabling problem at Yeditepe University. In 
this initial study, different memetic algorithms 
were described. A type of violation directed hill 
climbing (Alkan and Özcan, 2003) was also 
investigated as a part of the memetic algorithm 
which turned out to be the best choice. A survey 
on examination timetabling is provided by 
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Qu et al. (2009). Carter (1986) and Carter et 
al. (1996a, 1996b) provide earlier surveys on 
examination timetabling.

3.2 Problem description

In this study, we deal with the examination 
timetabling problem at Yeditepe University. 

This specific problem requires finding the best 
timeslots for a given set of examinations under 
four hard constraints and a soft constraint. The 
hard constraints are as follows:

Scheduled examination restriction: • 
Each examination must be assigned to a 
timeslot only once.

Table 2. Different approaches to examination timetabling 

Approach Representative Reference(s)

Decomposition and/or construction heuristics Qu and Burke (2007);

Simulated annealing Thompson and Dowsland (1998); Merlot et al. (2002);

Genetic algorithms and constraint satisfaction Marin (1998)

Grouping genetic algorithm Erben (2001)

Iterative greedy algorithm Caramia et al. (2001)

Tabu search Di Gaspero and Schaerf (2001); Burke et al. (2005)

Multiobjective evolutionary algorithm Paquete and Fonseca (2001); Cheong et al. (2007)

Greedy randomised adaptive search procedure Casey and Thompson (2003)

Adaptive heuristic ordering strategies Burke and Newall, (2004)

Very large neighbourhood search Abdullah et al. (2007)

Fuzzy reasoning Petrovic et al. (2005)

Variable neighbourhood search Qu and Burke (2005)

Ant colony optimisation Dowsland and Thompson (2005)

Hybrid heuristics Azimi (2005), Ersoy et al. (2007)

Neural network Corr et al. (2006)

Case based reasoning based investigations Petrovic et al. (2007)

Alternating stochastic-deterministic local search Caramia and Dell’Olmo (2007)

Hyper-heuristics Burke et al. (2006), Pillay and Banzhaf (2008)

Table 3. Some examination timetabling problems from different universities and the initial ap-
proaches proposed to solve them 

Institution Reference Approach

University of Nottingham Burke et al. (1995) Memetic algorithm

Middle East Technical University Ergul (1996) Genetic algorithm

École de Technologie Supérieure Wong et al. (2002) Genetic algorithm

University of Melbourne Merlot et al. (2002) A multi-phase hybrid algorithm

University of Technology MARA Kendall and Hussin (2005) Hyper-heuristic

Yeditepe University Özcan et al. (2005) Memetic algorithm
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Unscheduled examination restriction:•  
All the examinations must be scheduled.
Examination clash restriction (C• 1): A 
student cannot enter into more than one 
examination at a given time.
Seating capacity restriction (C• 2): The 
number of students seated for all exams 
at a timeslot cannot be more than a given 
capacity.

The soft constraint is as follows:

Examination spread preference (C• 3): 
A student should have at least a single 
timeslot in between his/her examinations 
in the same day.

Let E represent the set of examinations 
E={e1,…, ej,…,en} and let S denotes the ordered 
list of timeslots to be assigned to the examina-
tions, S={t1,…, tk,…,tp}. An array A={a1,…, 
aj,…,an} is used as a direct representation of a 
candidate solution, where each entry aj=tk, tk ∈S, 
indicates that ej is assigned to a timeslot tk in S. 
Hence, scheduled and unscheduled examination 
restrictions are resolved by using this direct and 
complete representation that encodes a timeslot 
for each given examination. The quality of a 
given timetable (TT) with respect to a set of stu-
dents and the courses upon which they enrolled 
(SR) is determined by calculating the weighted 
average of constraint violations.

quality TT
violations C TT SR w

i i
i

( )
( , , )

=
-

+
"
å

1

1  
 

 (1)

where i={1,2,3} and violations measures the 
violations due to a constraint Ci in TT consid-
ering SR.

The performances of a set of Reinforcement 
Learning – Great Deluge hyper-heuristics are 
investigated over the Yeditepe University and 
Toronto benchmarks (Carter et al., 1996b). 
Yeditepe University (Faculty of Engineering) 
data set contains real problem instances from 

each semester in three consecutive years. Bilgin 
et al. (2007) modified the initial data set provided 
in Özcan et al. (2005) with new properties and 
also generated a variant of Toronto bench-
marks that fits into the problem formulation. 
The Yeditepe University data sets and Toronto 
benchmarks can be obtained from http://www.
cs.nott.ac.uk/~exo/research/TTML/ and http://
www.cs.nott.ac.uk/~rxq/data.htm, respectively. 
The number of exams determines the size of 
the search space to be explored, but the dif-
ficulty of a given problem might change with 
respect to some other characteristics, such as 
the number of students or conflict density (ratio 
of the number of examination pairs that should 
not clash to the total number of examination 
pairs) that might implicitly or explicitly restrict 
the search space containing feasible solutions. 
Such properties for each experimental data are 
provided in Table 4.

4 the reiNforCemeNt 
learNiNG – Great deluGe 
hyPer-heuristiC

Reinforcement Learning (RL) is a general 
term for a set of widely used approaches that 
provide a way to learn how to behave when 
an action comes or “how to map situations 
to actions” (Sutton and Barto, 1998) through 
trail-and-error interactions (Kaelbling et al., 
1996). A choice hyper-heuristic combining 
reinforcement learning heuristic selection and 
great deluge move acceptance is implemented 
as shown in Figure 2. As suggested in Nareyek 
(2003), additive adaptation rate that increments 
the utility value of the low level heuristic is 
used in the case of an improvement as a reward 
at step 14. This value is tested against three 
different negative adaptation rates, namely 
subtractive, divisional and root, denoted as r1, 
r2 and r3, respectively for the punishment of 
a heuristic causing a worsening move at step 
17, where ui is the utility value of the ith low 
level heuristic:

r u u
i i1

1: = -  (2)
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r u u
i i2

2: /=  (3)

r u u
i i3

: =  (4)

Memory length is implemented not only in 
terms of adaptation rates, but also by using a 
lower and an upper bound on the utility values. 
We experimented with four different ranges in 
[0,number_of_heuristics×(5i)], i={1,2,3,4}. 
It is assumed that these bounds are checked 
during steps 14 and 17. Optimistic initial util-
ity values are utilised and all utilities are set 
to 0.75×upper bound at step 3 to support 
exploration. As the environment might change 
dynamically, bounds on the utility values are 
essential in order to encourage exploration in 
further steps. Reinforcement learning is based 

on the idea that heuristics obtaining large 
rewards should be more likely to be selected 
again, while heuristics getting small rewards 
should be less likely to be selected again. The 
reinforcement scheme used returns the same 
reward for all heuristic choices and we use the 
maximal utility value to select a heuristic. Note 
that selecting the heuristic with this strategy (de-
noted as max) is reported in (Nareyek, 2003) to 
be the best choice for step 9. If there are multiple 
low level heuristics under consideration, since 
their utility values are the same, then a random 
choice is made. Another approach to decide 
whether a given total reward is small or large 
can be achieved by comparing that value to a 
relative reference reward, such as the average 
of all utility values. In addition to the maximal 

Table 4. Properties of Yeditepe and modified Toronto benchmark problem instances 

Data Set Instance Exams Students Enrolment Conflict Density Days Capacity

Yeditepe yue20011 126 559 3486 0.18 6 450

yue20012 141 591 3708 0.18 6 450

yue20013 26 234 447 0.25 2 150

yue20021 162 826 5755 0.18 7 550

yue20022 182 869 5687 0.17 7 550

yue20023 38 420 790 0.20 2 150

yue20031 174 1125 6714 0.15 6 550

yue20032 210 1185 6833 0.14 6 550

Toronto car91 I 682 16925 56877 0.13 17 1550

car92 I 543 18419 55522 0.14 12 2000

ear83 I 190 1125 8109 0.27 8 350

hecs92 I 81 2823 10632 0.42 6 650

kfu93 461 5349 25118 0.06 7 1955

lse91 381 2726 10918 0.06 6 635

pur93 I 2419 30029 120681 0.03 10 5000

rye92 486 11483 45051 0.07 8 2055

sta83 I 139 611 5751 0.14 4 3024

tre92 261 4360 14901 0.18 10 655

uta92 I 622 21266 58979 0.13 12 2800

ute92 184 2749 11793 0.08 3 1240

yor83 I 181 941 6034 0.29 7 300
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utility, another heuristic selection scheme that 
chooses a low level heuristic randomly from 
the ones that are over (and equal to) the aver-
age, denoted as overAvr is implemented. The 
lower bound (qualityLB) is set to -1 at step 19 
considering the evaluation function (Equation 
1) during the experiments. The reinforcement 
learning heuristic selection methods using the 
negative adaptation rates r1, r2 and r3 are referred 
to as RL1, RL2 and RL3, respectively.

In this study, we employed four low 
level heuristics (Bilgin et al., 2007). Three of 
them H1, H2 and H3 are associated with three 
constraints C1, C2 and C3, respectively. They 
probe constraint based neighbourhoods using 
tournament selection to resolve violations of a 
corresponding constraint only. Each low level 
heuristic operates as follows:

1.  H1 (H(x)): This heuristic chooses a number 
of examinations randomly that violate x=C1 
and this number is referred to as toursize1. 
Then, the examination causing the largest 
number of violations is selected. This ex-
amination is reassigned to a timeslot from 
a randomly selected set of timeslots (tour-
size2) which generates the least number of 
x=C1 violations.

2.  H2: Using a tournament strategy, a num-
ber of timeslots (toursize3) with capacity 
constraint violations are selected. Exami-
nations in the timeslot that has the largest 
number of violations are marked for further 
processing. The examination with the larg-
est number of enrolled students is resched-
uled. Then, this examination is reassigned 
to a timeslot from a randomly selected set 
of timeslots (toursize4) which generates 
the least amount of C2 violations.

3.  H3: This heuristic employs the same strat-
egy as described in H(x) with x=C3.

4.  H4: This heuristic makes a pass over all the 
examinations and reschedules the examina-
tion under consideration with a probability 
of 1/number_of_examinations.

5 exPerimeNtal results

The experiments were performed on a Pentium 
IV 3 GHz LINUX (Fedora Core 8) PC with 2 
GB memory. Each hyper-heuristic is tested 
on each instance for 50 trials and each trial 
is terminated after 600 CPU seconds. Initial 
experiments were performed for parameter 
tuning. Unless mentioned otherwise, the util-
ity value upper bound is fixed as 40 and max 
is used as the utility based heuristic selection 

Figure 2. Pseudocode of the Reinforcement Learning – Great Deluge hyper-heuristic
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strategy within the reinforcement learning 
hyper-heuristics. A sample run is performed for 
sta83 I using a reinforcement learning – great 
deluge hyper-heuristic. Figure 3 illustrates the 
change in utility for each low level heuristic 
and the improvement based on different nega-
tive adaptation rates for this run. If a low level 
heuristic worsens the solution after a number of 
successive improving moves, the best heuristic 
still gets a chance to operate on the candidate 
solution. The frequency of that chance is de-
termined by the negative adaptation rate. For 
example, H3 gets selected more frequently when 
the adaptation rate is subtractive(/divisional) 
as compared to divisional(/root) before the 
optimistic utility values of all heuristics reduces 
toward the lower bound (see Figure 3). The more 
severe (high) this rate is, the more exploration 
of different heuristics is favoured. All the low 
level heuristics get invoked within tens of steps 
while using divisional and root adaptation 
rates (Figure 3. (b) and (c)), whereas only two 
heuristics get invoked while using a subtractive 
adaptation rate (Figure 3. (a)).

The results show that all low level heuristics 
are valuable in improving a candidate solution. It 
seems that the quality of a solution is improved 
slowly whenever a slow negative adaptation 
rate is used. Naturally, there is still the chance 
of getting stuck at a local optimum in the long 
run. A low level heuristic at any step is chosen 
with a probability in {1.00, 0.50, 0.33, 0.25}. 
The reinforcement learning heuristic selection 
arranges these probabilities dynamically dur-
ing the search process. As the search stagnates 
and a local optimum is found, the probability 
of 0.25 is used more frequently while selecting 
a low level heuristic.

In order to observe the effect of memory 
length via different combinations of negative 
adaptation {subtractive, divisional, root} and 
upper bound for the utility values {20, 40, 
60, 80}experiments have been performed on 
modified Toronto problem instances. As a total 
twelve different choices are executed for each 
data and each choice is ranked from 1 (best) 
to 12 (worst) using the results from the runs. 
The average rank of a choice over all data and 

the related standard deviation are provided in 
Figure 4.

Determining the best adaptation rate, which 
is also vital to adjust the memory length, seems 
to be a key issue in fully utilising a reinforce-
ment learning scheme within a hyper-heuristic. 
Different adaptation rates might yield differ-
ent performances. The results show that the 
RL1 heuristic selection method with a utility 
upper bound of 40 delivers the best average 
performance when combined with the great 
deluge method as a hyper-heuristic. Yet, this 
performance variation is not statistically better 
than the rest.

Using the best configuration from the pre-
vious set of experiments, another experiment 
is performed over modified Toronto problem 
instances to compare the average performances 
of utility based heuristic selection schemes; 
max and overAvr. Figure 5 summarises the 
experimental results. Maximal utility selection 
performs slightly better than overAvr with an 
average rank of 1.42 for the modified problem 
instances {car91 I, car92 I, kfu93, lse91, pur93 
I, rye92, ute92}. There is a tie for sta83 I. Still, 
the performance difference between max and 
overAvr is not statistically significant. There 
might still be potential for a future use of this 
approach, as, in general, overAvr shows success 
in solving problem instances with relatively 
high conflict densities.

The reinforcement learning heuristic 
selection method, which is referred to as RL1, 
utilises additive reward and subtractive pun-
ishment schemes with a utility upper bound 
of 40 and max. RL1 is combined with great 
deluge and tested against simple random – 
great deluge hyper-heuristic during the final 
set of experiments. The results are provided 
in Table 5. The percentage improvement in 
the table uses whichever approach generates 
a better result (average best of fifty trials) as 
the baseline for comparison. The simple ran-
dom – great deluge hyper-heuristic generates 
better average performance for eight problem 
instances. It is especially successful in solv-
ing the Yeditepe problem instances which are 
smaller and have low conflict densities when 
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compared with the modified Toronto instances. 
Yet, RL1 improves the performance of simple 
random hyper-heuristic with the great deluge 
move acceptance on eleven problem instances 
(out of twenty one problem instances), and for 
two problem instances there is a tie.

Finally, RL1 – great deluge is compared to 
two previous studies. Bilgin et al. (2007) showed 
that the choice function – simulated annealing 
hyper-heuristic, out of thirty five approaches, 
performs the best for examination timetabling. 
In a recent study, Özcan et al. (2009) introduced 
a new move acceptance strategy that can be used 
in hyper-heuristics. The experiments resulted 
in the success of a simple random – late accep-

tance hyper-heuristic, performing even better 
than choice function – simulated annealing. 
Both of these approaches are compared to the 
RL1 – great deluge in Table 6.

A hyper-heuristic learns how to make good 
moves through both heuristic selection and 
move acceptance. If a move is rejected, then 
the selected heuristic is annulled. Hence, if a 
hyper-heuristic uses a simple random heuristic 
selection, it does not imply that there is no 
learning within that hyper-heuristic. The late 
acceptance strategy uses a fixed length memory 
to hold the quality of some previously visited 
solutions. Simple random heuristic selection 
diversifies the search, while the late acceptance 

Figure 3. Plot of utility value for each low level heuristic and quality versus iteration on sta83 I 
using the reinforcement learning – great deluge hyper-heuristic based on (a) subtractive, (b) di-
visional and (c) root negative adaptation rates with max, utility upper bound=40, respectively 
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Figure 4. Average rank of hyper-heuristics using different heuristic selection methods {RL1, 
RL2, RL3} with a utility upper bound of (a) 20, (b) 40, (c) 60 and (d) 80 over modified Toronto 
instances

Figure 5. Comparison of utility value based heuristic selection schemes over modified Toronto 
instances based on their average ranks 
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strategy intensifies the search process by ap-
proving the better moves based on its memory. 
This course of action can also be considered to 
be learning. Reinforcement learning not only 
improves on simple random heuristic selection 
when combined with great deluge but it also 
generates better results as compared to another 
learning hyper-heuristic; choice function – 
simulated annealing. Moreover, its performance 
is comparable to the performance of the simple 
random – late acceptance hyper-heuristic.

6 CoNClusioN

In this article, a hyper-heuristic can be thought 
of as a methodology that guides the search 
process at a high level by controlling a set of 
perturbation low level heuristics. A single point 
search hyper-heuristic framework that com-
bines successive stages of heuristic selection 
and move acceptance is employed during the 
experiments. It has been observed in Bilgin et al. 
(2007) that simple random heuristic selection in 
a great deluge based hyper-heuristic performed 
well for solving an examination timetabling 

Table 5. Comparison of reinforcement learning and simple random heuristic selection within 
a hyper-heuristic using the great deluge acceptance move method. “≥” and “≈” indicate “is 
better than” and “delivers a similar performance”, respectively. ‘Percentage improvement’ 
uses the average best quality obtained in fifty runs for the better approach as the baseline for 
comparison. 

Instance Comparison %-improv.

car91 I RL1–GD ≥ SR–GD 1.70

car92 I RL1–GD ≥ SR–GD 1.68

ear83 I RL1–GD ≥ SR–GD 2.02

hecs92 I SR–GD ≥ RL1–GD 11.85

kfu93 RL1–GD ≥ SR–GD 2.09

lse91 RL1–GD ≥ SR–GD 2.47

pur93 I SR–GD ≥ RL1–GD 0.32

rye92 RL1–GD ≥ SR–GD 3.43

sta83 I RL1–GD ≥ SR–GD 0.06

tre92 SR–GD ≥ RL1–GD 5.05

uta92 I SR–GD ≥ RL1–GD 0.23

ute92 RL1–GD ≥ SR–GD 0.28

yor83 I RL1–GD ≥ SR–GD 1.13

yue20011 RL1–GD ≈ SR–GD 0.00

yue20012 RL1–GD ≥ SR–GD 0.53

yue20013 RL1–GD ≈ SR–GD 0.00

yue20021 SR–GD ≥ RL1–GD 1.49

yue20022 SR–GD ≥ RL1–GD 0.83

yue20023 SR–GD ≥ RL1–GD 0.71

yue20031 RL1–GD ≥ SR–GD 5.26

yue20032 SR–GD ≥ RL1–GD 0.88
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problem encountered at Yeditepe University 
every semester. The same problem is used as a 
case study to investigate reinforcement learning 
with different components as heuristic selection 
methods in place of simple random.

There are different ways of implementing 
the great deluge move acceptance. In this study, 
a linear decreasing rate is adopted as suggested 
in previous studies (Bilgin et al., 2007; Kendal 
and Mohamad, 2004). Additionally, CPU time is 
used as a termination criterion and hence, CPU 
time is used as a part of the level decreasing 
scheme. This level sets a goal for the chosen 
heuristic in the case of a worsening move after its 
invocation. The resultant bad move is required 
to have a better quality than the goal, otherwise 
it is rejected. Using CPU time within the great 
deluge provides an additional side benefit. The 
running times of low level heuristics might be 
different. If a heuristic takes a short time to 
execute, then the expectation on the quality of 
the resultant move is lower as compared to a 
heuristic which takes a longer time to execute. 
This strategy seems to be viable and great del-

uge based on this strategy performs well as a 
hyper-heuristic component (Bilgin et al., 2007; 
Özcan et al., 2008).

A learning hyper-heuristic usually attempts 
to follow the best moves within a given period of 
time using some type of memory to make better 
future decisions. Bai et al. (2007b) observed that 
memory length is vital in learning and that the 
use of a learning mechanism with short term 
memory combined with a simulated annealing 
move acceptance generated the best results in 
their experiments over a set of course timeta-
bling problems. They used weighted adaptation 
and tested various learning rates that adjust 
the influence of rewards compiled at different 
stages of search. In this study, other factors 
regarding the memory that affect the learning 
process, such as adaptation rate, lower and upper 
bounds on the utility values are identified and 
tested using relatively short memory lengths as 
suggested before. Furthermore, two different 
heuristic selection strategies, based on the util-
ity values, are assessed. Considering only the 
adaptation rates, the results support the previous 

Table 6. Comparison of RL1 – great deluge to the previous studies; (1) choice function – simulated 
annealing (Bilgin et al., 2007), (2) simple random – late acceptance (Özcan et al., 2009). Each 
approach is ranked from 1 (best) to 3 (worst) for each modified Toronto problem instance. 

Instance RL1–GD (1) CF–SA (2) SR–LAS

car91 I 2 3 1

car92 I 1 3 2

ear83 I 1 2 3

hecs92 I 1 3 2

kfu93 1 3 2

lse91 2 3 1

pur93 I 2 3 1

rye92 2 3 1

sta83 I 1 3 2

tre92 1 3 2

uta92 I 2 3 1

ute92 3 1 2

yor83 I 2 3 1

avg. 1.62 2.77 1.62
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findings in Nareyek (2003). The combination 
of slow adaptation rates (additive/subtractive) 
seems to perform the best. The reinforcement 
learning – great deluge hyper-heuristic with 
the settings {lower bound=0, upper bound=40, 
heuristic selection strategy=max, positive 
adaptation rate =additive, negative adaptation 
rate=subtractive} improves the performance of 
the simple random – great deluge hyper-heu-
ristic for solving the examination timetabling 
problem instances studied in this article.

The choice of reinforcement learning 
heuristic selection components affects the 
memory length which in turn also affects the 
intensification and diversification processes 
during the search. The set of low level heu-
ristics contains neighbourhood operators that 
attempt to resolve conflicts due to a specific 
constraint type without considering whether 
the move will cause other constraint violations 
or not. The reinforcement heuristic selection 
chooses a constraint based heuristic as long as 
a given solution is improved in terms of overall 
quality. If the same heuristic starts generating 
worsening moves, the reinforcement learning 
heuristic selection method still supports the 
selection of the same heuristic until its utility 
value decreases to the same value as another 
one (or others). As soon as there is more than 
one low level heuristic with the same utility 
value, one of them is chosen randomly to give 
(another) chance to the other heuristic(s) for 
improving the candidate solution in hand. The 
intensification and diversification processes 
over the problem domain occur as a result of a 
dynamic interaction between heuristic selection, 
move acceptance and low level heuristics. The 
intensification process is activated whenever 
an improving move is accepted and continues 
as long as an improvement in the overall qual-
ity is achieved. Diversification arises in three 
ways which is mainly based on the great deluge 
move acceptance. Firstly, whenever there is 
a worsening move, the intensification phase 
ends. This worsening move might still be ac-
cepted by the great deluge allowing a jump to 

other promising regions of the search space. 
Secondly, a low level heuristic is included 
within the hyper-heuristic that perturbs a given 
candidate solution randomly using a small step 
size. If this heuristic is selected for invocation, 
it acts as a diversification mechanism. Finally, 
the random choice, in the case of equal utility 
values, provides an additional diversification 
mechanism. The reinforcement learning – great 
deluge hyper-heuristic with the given low level 
heuristics attempts to balance intensification and 
diversification automatically. It turns out to be 
successful in this attempt as this hyper-heuristic 
delivers a good performance over the Yeditepe 
University examination timetabling problem.
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