
International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 39

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Exam Timetabling, Great Deluge, Hyper-Heuristics, Meta-Heuristics, Reinforcement
Learning

1 iNtroduCtioN

Meta-heuristics have been widely and suc-
cessfully applied to many different problems.
However, significant development effort is
often needed to produce fine tuned techniques
for the particular problem or even instance
that is under investigation. Hyper-heuristics
represent an increasingly popular research
direction in search and optimisation (Burke

et al., 2003a; Ross, 2005; Chakhlevitch et al.,
2008; Özcan et al., 2008; Burke et al. 2009a,
2009b). One of the aims is to at produce more
general problem solving techniques, which can
potentially be applied to different problems or
instances with little development effort. The
idea is that a hyper-heuristic approach should
able to intelligently choose an appropriate
low-level heuristic (from a given repository
of heuristics) to be applied at any given time.
Thus, in hyper-heuristics, we are interested in
adaptively finding solution methods, rather than

a reinforcement learning:
Great-deluge hyper-heuristic for

examination timetabling
Ender Özcan, University of Nottingham, UK

Mustafa Mısır, Yeditepe University, Turkey

Gabriela Ochoa, University of Nottingham, UK

Edmund K. Burke, University of Nottingham, UK

abstraCt
Hyper-heuristics can be identified as methodologies that search the space generated by a finite set of low level
heuristics for solving search problems. An iterative hyper-heuristic framework can be thought of as requiring a
single candidate solution and multiple perturbation low level heuristics. An initially generated complete solu-
tion goes through two successive processes (heuristic selection and move acceptance) until a set of termination
criteria is satisfied. A motivating goal of hyper-heuristic research is to create automated techniques that are
applicable to a wide range of problems with different characteristics. Some previous studies show that different
combinations of heuristic selection and move acceptance as hyper-heuristic components might yield different
performances. This study investigates whether learning heuristic selection can improve the performance of a
great deluge based hyper-heuristic using an examination timetabling problem as a case study.

DOI: 10.4018/jamc.2010102603

40 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

directly producing a solution for whichever
search problem we are studying.

Several hyper-heuristics approaches have
been proposed in the literature. It is possible
to consider methodologies based on perturba-
tion low-level heuristics and those based on
construction low-level heuristics. The latter
type builds a solution incrementally, starting
with a blank solution and using construction
heuristics to gradually build a complete solution.
They have been successfully investigated for
several combinatorial optimisation problems
such as: bin-packing (Tereshima-Marin et al.,
2007), timetabling (Terashima-Marin et al.,
1999; Burke et al., 2007, Qu et al., 2008), pro-
duction scheduling (Vazquez-Rodriguez et al.,
2007), and cutting stock (Terashima-Marin et
al., 2005). On the other hand, approaches based
on perturbation heuristics find a reasonable
initial solution by some straightforward means
(either randomly or using a simple construction
heuristic) and then use heuristics, such as shift
and swap to perturb solution components with
the aim of finding improved solutions. In other
words, they start from a complete solution and
then search or select among a set of neighbour-
hoods for better solutions. A class of the most
commonly used hyper-heuristics based on per-
turbation (improvement) low level heuristics is
the choice hyper-heuristics (heuristic selection
methodologies). They have been applied to real
world problems, such as, personnel scheduling
(Cowling et al., 2001; Burke et al., 2003b),
timetabling (Burke et al., 2003b; Dowsland et
al., 2007), and vehicle routing problems (Pis-
inger et al., 2007). In a choice hyper-heuristic
framework based on perturbation low level
heuristics, search is mostly performed using a
single candidate solution. Such hyper-heuristics,
iteratively, attempt to improve a given solution
throughout two consecutive phases: heuristic
selection and move acceptance as illustrated
in Figure 1.

In Figure 1, a candidate solution (St) at a
given time (t) is modified into a new solution
(or solutions) using a chosen heuristic (or
heuristics). Then, a move acceptance method
is employed to decide whether to accept or

reject a resultant solution (Rt). This process is
repeated until a predefined stopping condition
is met. Only problem independent information
flow is allowed between the problem domain
and hyper-heuristic layers. Unless, we specifi-
cally say otherwise, a choice hyper-heuristic
refers to a hyper-heuristic that operates on a set
of perturbation low level heuristics from this
point onwards. Moreover, such a hyper-heuristic
will be denoted as heuristic selection − move
acceptance based on its components.

Great deluge is a well-known acceptance
strategy (Dueck, 1993; Burke et al., 2003). Bil-
gin et al. (2007) reported that hyper-heuristics
formed by different combinations of heuristic
selection and move acceptance methods might
yield different performances. Moreover, simple
random−great deluge delivered a similar per-
formance to the best approach; namely, choice
function – simulated annealing for examination
timetabling. Obviously, simple random receives
no feedback at all during the search to improve
upon the heuristic selection process. Hence, in
this study, great-deluge is preferred as the move
acceptance component within a choice hyper-
heuristic framework to investigate the effect
of learning heuristic selection on its overall
performance for solving the same examination
timetabling problem as formulated in Bilgin et
al. (2007). The learning mechanisms, inspired
by the work by Nareyek (2003), are based on
weight adaptation.

2 hyper-heuristics and learning

Although hyper-heuristic as a term has been
introduced recently (Denzinger et al., 1997), the
origins of the idea date back to the early 1960s
(Fisher et al., 1961). A hyper-heuristic operates
at a high level by managing or generating low
level heuristics which operate on the problem
domain. Meta-heuristics have been commonly
used as hyper-heuristics. A hyper-heuristic can
conduct a single point or multi-point search.
Population based meta-heuristics which per-
form multi-point search, such as learning classi-
fier systems (Marín-Blázquez and Schulenburg,
2005), evolutionary algorithms (Cowling et al.,

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 41

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

2002; Han et al., 2003; Pillay and Banzhaf,
2008), genetic programming (Keller et al., 2007;
Burke et al., 2009a), ant colony optimisation
(Cuesta-Canada et al., 2005; Chen et al., 2007)
have been applied to a variety of combinato-
rial optimisation problems as hyper-heuristics.
Distributed computing methods can also be
used to perform multi-point search (Rattadilok
et al., 2004; Rattadilok et al., 2005; Ouelhadj
et al., 2008). Özcan et al. (2008) presented
different hyper-heuristic frameworks show-
ing that a matching performance to memetic
algorithms can be achieved. In this study, the
choice hyper-heuristic framework as presented
in Figure 1 is studied. The primary components
of such hyper-heuristics are heuristic selection
and move acceptance.

A major motivating feature of hyper-heuris-
tic research is the aim to facilitate applicability
to different problem instances having different
characteristics as well as different problem
domains. With this goal in mind, machine
learning techniques are vital for hyper-heuristics

to make the right choices during the heuristic
selection process. Learning can be achieved in
an offline or online manner. An offline learning
hyper-heuristic requires training over a set of
problems, before it is used to solve the unseen
problem instances. For example, Burke et al.
(2006) use a case based reasoning system as a
hyper-heuristic for solving course and examina-
tion timetabling problems. An online learning
hyper-heuristic learns through the feedback
obtained during the search process while solving
a given problem. Most of the existing online
learning hyper-heuristics incorporate reinforce-
ment learning (Kaelbling et al., 1996; Sutton
et al., 1998). A reinforcement learning system
interacts with the environment and changes
its state via a selected action in such a way as
to increase some notion of long term reward.
Hence, a learning hyper-heuristic maintains a
utility value obtained through predetermined
reward and punishment schemes for each low
level heuristic. A heuristic is selected based on
the utility values of the low level heuristics in

Figure 1. A hyper-heuristic framework based on a single point search, where St denotes a candi-
date solution at time t, Hi is the ith low level heuristic, Rt is the resultant solution after applying
a set of selected low level heuristics that goes into the move acceptance process

St

Hyper-heuristic

Problem Domain

H1 Hn Hi

St+1

S0

Problem independent information gathering,
performance statistics for heuristics, etc.

Select l
heuristic(s)

Apply

Heuristic Selection Move Acceptance

St , W

Representation, evaluation
function, initial solution (S0),
etc.

St+1 = v,

St+1 = St

L W

St+1

accept

reject
 OR

Low level heuristics

W ={∀k,Hk∈L: Hk(St)}

stop

Domain Barrier

return
best

42 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

hand at each step. Remembering and forgetting
represent core ingredients of learning. Remem-
bering can be achieved through reward and pun-
ishment schemes. Forgetting can be achieved
through the use of lower and upper bounds on
the utility values. Some reinforcement learning
methods use weighted average of the learnt
utility values. A dynamic weighting scheme
can be employed which favours the outcome of
the most recent actions or choices. Reward and
punishment schemes are allowed to use different
adaptation rates in the case of an improving and
worsening move, respectively. For example,
the utility value of a selected heuristic can be
increased at a constant rate linearly whenever
there is an improvement after it is employed,
otherwise the utility value can be decreased at
a different rate, or it can even be kept constant.
Initialisation of the utility values, lower and
upper bounds for them along with a memory
adjustment scheme (weighting) represent the
remainder of the constituents for a reinforce-
ment learning based hyper-heuristic.

Some previously studied heuristic selection
methods are summarised in Table 1. Simple
random, random gradient, random permutation
gradient, greedy and choice function heuristic
selection methods are presented in Cowling et
al. (2001a). All these approaches can be con-
sidered to be learning heuristic selection meth-
ods, except simple random. In Cowling et al.
(2001b), a parameter-free choice function was
presented. As a problem domain, sales summit
scheduling was used in both studies. Cowling
and Chakhlevitch (2003) investigated peckish
heuristic selection strategies that eliminated
the selection and application of all low level
heuristics as in greedy heuristic selection.

Nareyek (2003) investigated reinforcement
learning using different reward/penalty schemes
and heuristic selection strategies on the Orc
Quest problem and in the logistics domain.
Additive/subtractive adaptation rates combined
with heuristic selection using the maximal
utility generated better results as opposed to a
fair random choice (softmax, roulette wheel).
All heuristics were assigned to a utility value
of 0 initially and raw utility values were main-

tained. Upper and lower bounds were defined
for the utility values. In Burke et al. (2003b),
reinforcement learning was combined with tabu
search in a hyper-heuristic and applied to the
personnel rostering and timetabling problems.
The aim of this modification was to prevent
the selection of some heuristics for a while by
inserting them into a variable-length tabu list.
A non-tabu heuristic with the highest utility
value was chosen at each step.

Some studies concentrate on move ac-
ceptance in hyper-heuristics rather than upon
heuristic selection methods, as accepting a
move turns out to be an extremely important
decision. In Cowling et al. (2001), heuristic
selection methods are combined with either
all moves accepted or with only an improving
moves accepted strategy. On the other hand,
Ayob and Kendall (2003) proposed three dif-
ferent Monte Carlo move acceptance strategies
based on the objective value change due to the
move, time (units), number of consecutive non-
improving moves. Simple random was used as
a heuristic selection within the hyper-heuristic
for solving the component placement problem.
The best move acceptance turned out to be
exponential Monte Carlo with counter. One of
the well known move acceptance strategies is
simulated annealing (SA) (Kirkpatrick, 1983).
The improving moves or the moves that generate
an equal quality solution are accepted, while a
worsening move is not rejected immediately.
Acceptance of a given candidate solution is
based on a probabilistic framework that depends
on the objective value change and a temperature
that decreases in time (cooling). The difference
between exponential Monte Carlo with counter
and the simulated annealing is that the latter
one uses this cooling schedule while the former
does not. Bai and Kendall (2003) investigated
the performance of a simple random – simu-
lated annealing hyper-heuristic on a shelf space
allocation problem. Anagnostopoulos et al.
(2006) applied a similar hyper-heuristic to a
set of travelling tournament problem instances
embedding a reheating scheme into the simu-
lated annealing move acceptance. In Bai et al.
(2007a), a reinforcement learning scheme is

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 43

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

combined with simulated annealing with reheat-
ing as a hyper-heuristic and applied to three
different problem domains: nurse rostering,
course timetabling and 1D bin packing.

In (Dueck, 1993), two move acceptance
strategies, namely great deluge (GD) and
record-to-record travel that accept worsening
moves based on a dynamic threshold value
were presented. Kendall and Mohamad (2004)
utilised a simple random – great deluge hyper-
heuristic to solve a mobile telecommunication
network problem. Great deluge uses a thresh-
old that decreases in time at a given rate (e.g.,
linearly) to determine an acceptance range for
the solution qualities based on three main pa-
rameters: (i) the maximum number of iterations
(or total time), (ii) the number of iterations (or
time) passed, and (iii) an expected range for the
maximum fitness change between the initial
and final objective value (e.g., lower bound). In
the case of an improving move, it is accepted,
while a worsening move is accepted only if

the objective value of the resultant candidate
solution is less than the computed threshold at
a given iteration. Kendall and Mohamad (2004)
used an iteration based threshold formula with
a maximum number of iterations as a termina-
tion criterion aiming a quadratic running time
for the overall algorithm.

Bilgin et al. (2007) employed different
heuristic selection and move acceptance mecha-
nisms and used their combinations as hyper-
heuristics. The results showed that a simple
random – great deluge hyper-heuristic was the
second best after choice function – simulated
annealing, considering the average performance
of all hyper-heuristics over a set of examina-
tion timetabling problems. Consequently, a
hyper-heuristic without learning delivered a
comparable performance to another one with
a learning mechanism. Therefore, in this study,
reinforcement learning is combined with great
deluge to observe the effect of learning heuristic
selection on the overall performance of the

Table 1. Description of a set of heuristic selection methods used within choice hyper-heuris-
tics

Name Description

Simple Random Choose a low level heuristic randomly

Random Descent Choose a low level heuristic randomly and employ the same heuristic as long as the
candidate solution in hand is improved

Random Permutation
Descent

Generate a random permutation of low level heuristics and form a cyclic list. Starting
from the first heuristic, employ it repeatedly until a worsening move is hit, then go
to the next heuristic in the list.

Greedy Apply all low level heuristics to the same candidate solution separately and choose
the heuristic that generates the best change in the objective value

Peckish Apply a subset of all low level heuristics to the same candidate solution and choose
the heuristic that generates the best change in the objective value

Choice Function Dynamically score each heuristic weighing their individual performance, combined
performance with the previously invoked heuristic and time passed since the last call
to the heuristic at a given step. Then, a heuristic is chosen based on these scores.

Reinforcement Learning Each heuristic carries a utility value and heuristic selection is performed based on
these values. This value gets updated at each step based on the success of the chosen
heuristic. An improving move is rewarded, while a worsening move is punished using
a preselected adaptation rate.

Tabu Search This method employs the same strategy as Reinforcement Learning and uses a tabu
list to keep track of the heuristics causing worsening moves. A heuristic is selected
which is not in the tabu list.

44 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

hyper-heuristic for solving the same problem.
All the runs during the experiments in (Bilgin
et al., 2007) were restricted to 600 seconds;
hence, the threshold is computed based on
the CPU time within the great deluge move
acceptance strategy. If a heuristic takes less
time, then the threshold value will be lower as
compared to the one that takes longer time. This
hyper-heuristic differs from the one that Kendall
and Hussin (2005) have investigated, as their
hyper-heuristic embeds a tabu list approach to
keep the chosen heuristic from getting selected
again for a number of steps (tabu duration) into
reinforcement learning as a heuristic selection.
Moreover, the low level heuristics contained a
mixture of thirteen different construction and
perturbation low level heuristics.

Özcan et al. (2009) combined differ-
ent heuristic selection methods with a late
acceptance strategy, a new method that is
initially presented as a local search for solv-
ing examination timetabling problems. Late
acceptance requires a single parameter and it
is a memory based approach. A trial solution
is compared with a previously visited solution
at a fixed distance apart from the current step
in contrast to the conventional approaches that
usually compare the trial solution with a current
one. The trial solution is accepted, if there is
an improvement over this previously visited
solution. The results showed that reinforcement
learning, reinforcement learning with tabu list
or choice function heuristic selection methods
did not improve the performance of the hyper-
heuristic if late acceptance is used. Choosing a
heuristic randomly at each step performed the
best. More on hyper-heuristics can be found
in Burke et al. (2003a), Ross (2005), Özcan et
al. (2008), Chakhlevitch and Cowling (2008),
Burke et al. (2009a, 2009b, 2009c).

3 the examiNatioN
timetabliNG Problem

Examination timetabling is a challenging
real world problem addressed by educational
institutions. The goal is to find the best assign-

ment of available timeslots and possibly other
resources, such as rooms for each examination
subject to a range of constraints. There are two
types of constraints: hard and soft constraints.
Hard constraints must not be violated under
any circumstances and a solution which sat-
isfies them is called a feasible solution. For
example, a student cannot take any pair of
his/her examinations at the same time. Soft
constraints reflect preferences and their viola-
tion is allowed, but the goal is to minimise it.
For example, a number of timeslots might be
preferred in between the examinations of a
student scheduled to the same day.

3.1 Previous work

Researchers have been studying various aspects
of examination timetabling problems since the
early 1960s (Cole, 1964; Broder, 1964). Exami-
nation timetabling problems are NP-complete
(Even, 1976). Since the search space of candi-
date solutions grows exponentially with respect
to the number examinations to be scheduled,
many different non-traditional approaches (e.g.,
meta-heuristics) have been investigated for
solving a variety of examination timetabling
problems. Tables 2 and 3 provide some illustra-
tive examples of these approaches.

Many examination timetabling problems
are studied from a practical point of view, as they
arise due to practical needs within institutions.
It is worth pointing out that different institutions
have very different requirements (Burke et al.,
1996a). One consequence of this is that there is
a variety of examination timetabling problems in
the literature (Table 3; see Qu et al., 2009). Carter
et al. (1996b) introduced one of the widely used
examination timetabling data sets which was
originally made up of 13 real world problems.
Özcan et al. (2005) introduced an examination
timetabling problem at Yeditepe University. In
this initial study, different memetic algorithms
were described. A type of violation directed hill
climbing (Alkan and Özcan, 2003) was also
investigated as a part of the memetic algorithm
which turned out to be the best choice. A survey
on examination timetabling is provided by

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 45

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Qu et al. (2009). Carter (1986) and Carter et
al. (1996a, 1996b) provide earlier surveys on
examination timetabling.

3.2 Problem description

In this study, we deal with the examination
timetabling problem at Yeditepe University.

This specific problem requires finding the best
timeslots for a given set of examinations under
four hard constraints and a soft constraint. The
hard constraints are as follows:

Scheduled examination restriction: •
Each examination must be assigned to a
timeslot only once.

Table 2. Different approaches to examination timetabling

Approach Representative Reference(s)

Decomposition and/or construction heuristics Qu and Burke (2007);

Simulated annealing Thompson and Dowsland (1998); Merlot et al. (2002);

Genetic algorithms and constraint satisfaction Marin (1998)

Grouping genetic algorithm Erben (2001)

Iterative greedy algorithm Caramia et al. (2001)

Tabu search Di Gaspero and Schaerf (2001); Burke et al. (2005)

Multiobjective evolutionary algorithm Paquete and Fonseca (2001); Cheong et al. (2007)

Greedy randomised adaptive search procedure Casey and Thompson (2003)

Adaptive heuristic ordering strategies Burke and Newall, (2004)

Very large neighbourhood search Abdullah et al. (2007)

Fuzzy reasoning Petrovic et al. (2005)

Variable neighbourhood search Qu and Burke (2005)

Ant colony optimisation Dowsland and Thompson (2005)

Hybrid heuristics Azimi (2005), Ersoy et al. (2007)

Neural network Corr et al. (2006)

Case based reasoning based investigations Petrovic et al. (2007)

Alternating stochastic-deterministic local search Caramia and Dell’Olmo (2007)

Hyper-heuristics Burke et al. (2006), Pillay and Banzhaf (2008)

Table 3. Some examination timetabling problems from different universities and the initial ap-
proaches proposed to solve them

Institution Reference Approach

University of Nottingham Burke et al. (1995) Memetic algorithm

Middle East Technical University Ergul (1996) Genetic algorithm

École de Technologie Supérieure Wong et al. (2002) Genetic algorithm

University of Melbourne Merlot et al. (2002) A multi-phase hybrid algorithm

University of Technology MARA Kendall and Hussin (2005) Hyper-heuristic

Yeditepe University Özcan et al. (2005) Memetic algorithm

46 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Unscheduled examination restriction:•
All the examinations must be scheduled.
Examination clash restriction (C• 1): A
student cannot enter into more than one
examination at a given time.
Seating capacity restriction (C• 2): The
number of students seated for all exams
at a timeslot cannot be more than a given
capacity.

The soft constraint is as follows:

Examination spread preference (C• 3):
A student should have at least a single
timeslot in between his/her examinations
in the same day.

Let E represent the set of examinations
E={e1,…, ej,…,en} and let S denotes the ordered
list of timeslots to be assigned to the examina-
tions, S={t1,…, tk,…,tp}. An array A={a1,…,
aj,…,an} is used as a direct representation of a
candidate solution, where each entry aj=tk, tk ∈S,
indicates that ej is assigned to a timeslot tk in S.
Hence, scheduled and unscheduled examination
restrictions are resolved by using this direct and
complete representation that encodes a timeslot
for each given examination. The quality of a
given timetable (TT) with respect to a set of stu-
dents and the courses upon which they enrolled
(SR) is determined by calculating the weighted
average of constraint violations.

quality TT
violations C TT SR w

i i
i

()
(, ,)

=
-

+
"
å

1

1

 (1)

where i={1,2,3} and violations measures the
violations due to a constraint Ci in TT consid-
ering SR.

The performances of a set of Reinforcement
Learning – Great Deluge hyper-heuristics are
investigated over the Yeditepe University and
Toronto benchmarks (Carter et al., 1996b).
Yeditepe University (Faculty of Engineering)
data set contains real problem instances from

each semester in three consecutive years. Bilgin
et al. (2007) modified the initial data set provided
in Özcan et al. (2005) with new properties and
also generated a variant of Toronto bench-
marks that fits into the problem formulation.
The Yeditepe University data sets and Toronto
benchmarks can be obtained from http://www.
cs.nott.ac.uk/~exo/research/TTML/ and http://
www.cs.nott.ac.uk/~rxq/data.htm, respectively.
The number of exams determines the size of
the search space to be explored, but the dif-
ficulty of a given problem might change with
respect to some other characteristics, such as
the number of students or conflict density (ratio
of the number of examination pairs that should
not clash to the total number of examination
pairs) that might implicitly or explicitly restrict
the search space containing feasible solutions.
Such properties for each experimental data are
provided in Table 4.

4 the reiNforCemeNt
learNiNG – Great deluGe
hyPer-heuristiC

Reinforcement Learning (RL) is a general
term for a set of widely used approaches that
provide a way to learn how to behave when
an action comes or “how to map situations
to actions” (Sutton and Barto, 1998) through
trail-and-error interactions (Kaelbling et al.,
1996). A choice hyper-heuristic combining
reinforcement learning heuristic selection and
great deluge move acceptance is implemented
as shown in Figure 2. As suggested in Nareyek
(2003), additive adaptation rate that increments
the utility value of the low level heuristic is
used in the case of an improvement as a reward
at step 14. This value is tested against three
different negative adaptation rates, namely
subtractive, divisional and root, denoted as r1,
r2 and r3, respectively for the punishment of
a heuristic causing a worsening move at step
17, where ui is the utility value of the ith low
level heuristic:

r u u
i i1

1: = - (2)

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 47

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

r u u
i i2

2: /= (3)

r u u
i i3

: = (4)

Memory length is implemented not only in
terms of adaptation rates, but also by using a
lower and an upper bound on the utility values.
We experimented with four different ranges in
[0,number_of_heuristics×(5i)], i={1,2,3,4}.
It is assumed that these bounds are checked
during steps 14 and 17. Optimistic initial util-
ity values are utilised and all utilities are set
to 0.75×upper bound at step 3 to support
exploration. As the environment might change
dynamically, bounds on the utility values are
essential in order to encourage exploration in
further steps. Reinforcement learning is based

on the idea that heuristics obtaining large
rewards should be more likely to be selected
again, while heuristics getting small rewards
should be less likely to be selected again. The
reinforcement scheme used returns the same
reward for all heuristic choices and we use the
maximal utility value to select a heuristic. Note
that selecting the heuristic with this strategy (de-
noted as max) is reported in (Nareyek, 2003) to
be the best choice for step 9. If there are multiple
low level heuristics under consideration, since
their utility values are the same, then a random
choice is made. Another approach to decide
whether a given total reward is small or large
can be achieved by comparing that value to a
relative reference reward, such as the average
of all utility values. In addition to the maximal

Table 4. Properties of Yeditepe and modified Toronto benchmark problem instances

Data Set Instance Exams Students Enrolment Conflict Density Days Capacity

Yeditepe yue20011 126 559 3486 0.18 6 450

yue20012 141 591 3708 0.18 6 450

yue20013 26 234 447 0.25 2 150

yue20021 162 826 5755 0.18 7 550

yue20022 182 869 5687 0.17 7 550

yue20023 38 420 790 0.20 2 150

yue20031 174 1125 6714 0.15 6 550

yue20032 210 1185 6833 0.14 6 550

Toronto car91 I 682 16925 56877 0.13 17 1550

car92 I 543 18419 55522 0.14 12 2000

ear83 I 190 1125 8109 0.27 8 350

hecs92 I 81 2823 10632 0.42 6 650

kfu93 461 5349 25118 0.06 7 1955

lse91 381 2726 10918 0.06 6 635

pur93 I 2419 30029 120681 0.03 10 5000

rye92 486 11483 45051 0.07 8 2055

sta83 I 139 611 5751 0.14 4 3024

tre92 261 4360 14901 0.18 10 655

uta92 I 622 21266 58979 0.13 12 2800

ute92 184 2749 11793 0.08 3 1240

yor83 I 181 941 6034 0.29 7 300

48 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

utility, another heuristic selection scheme that
chooses a low level heuristic randomly from
the ones that are over (and equal to) the aver-
age, denoted as overAvr is implemented. The
lower bound (qualityLB) is set to -1 at step 19
considering the evaluation function (Equation
1) during the experiments. The reinforcement
learning heuristic selection methods using the
negative adaptation rates r1, r2 and r3 are referred
to as RL1, RL2 and RL3, respectively.

In this study, we employed four low
level heuristics (Bilgin et al., 2007). Three of
them H1, H2 and H3 are associated with three
constraints C1, C2 and C3, respectively. They
probe constraint based neighbourhoods using
tournament selection to resolve violations of a
corresponding constraint only. Each low level
heuristic operates as follows:

1. H1 (H(x)): This heuristic chooses a number
of examinations randomly that violate x=C1
and this number is referred to as toursize1.
Then, the examination causing the largest
number of violations is selected. This ex-
amination is reassigned to a timeslot from
a randomly selected set of timeslots (tour-
size2) which generates the least number of
x=C1 violations.

2. H2: Using a tournament strategy, a num-
ber of timeslots (toursize3) with capacity
constraint violations are selected. Exami-
nations in the timeslot that has the largest
number of violations are marked for further
processing. The examination with the larg-
est number of enrolled students is resched-
uled. Then, this examination is reassigned
to a timeslot from a randomly selected set
of timeslots (toursize4) which generates
the least amount of C2 violations.

3. H3: This heuristic employs the same strat-
egy as described in H(x) with x=C3.

4. H4: This heuristic makes a pass over all the
examinations and reschedules the examina-
tion under consideration with a probability
of 1/number_of_examinations.

5 exPerimeNtal results

The experiments were performed on a Pentium
IV 3 GHz LINUX (Fedora Core 8) PC with 2
GB memory. Each hyper-heuristic is tested
on each instance for 50 trials and each trial
is terminated after 600 CPU seconds. Initial
experiments were performed for parameter
tuning. Unless mentioned otherwise, the util-
ity value upper bound is fixed as 40 and max
is used as the utility based heuristic selection

Figure 2. Pseudocode of the Reinforcement Learning – Great Deluge hyper-heuristic

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 49

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

strategy within the reinforcement learning
hyper-heuristics. A sample run is performed for
sta83 I using a reinforcement learning – great
deluge hyper-heuristic. Figure 3 illustrates the
change in utility for each low level heuristic
and the improvement based on different nega-
tive adaptation rates for this run. If a low level
heuristic worsens the solution after a number of
successive improving moves, the best heuristic
still gets a chance to operate on the candidate
solution. The frequency of that chance is de-
termined by the negative adaptation rate. For
example, H3 gets selected more frequently when
the adaptation rate is subtractive(/divisional)
as compared to divisional(/root) before the
optimistic utility values of all heuristics reduces
toward the lower bound (see Figure 3). The more
severe (high) this rate is, the more exploration
of different heuristics is favoured. All the low
level heuristics get invoked within tens of steps
while using divisional and root adaptation
rates (Figure 3. (b) and (c)), whereas only two
heuristics get invoked while using a subtractive
adaptation rate (Figure 3. (a)).

The results show that all low level heuristics
are valuable in improving a candidate solution. It
seems that the quality of a solution is improved
slowly whenever a slow negative adaptation
rate is used. Naturally, there is still the chance
of getting stuck at a local optimum in the long
run. A low level heuristic at any step is chosen
with a probability in {1.00, 0.50, 0.33, 0.25}.
The reinforcement learning heuristic selection
arranges these probabilities dynamically dur-
ing the search process. As the search stagnates
and a local optimum is found, the probability
of 0.25 is used more frequently while selecting
a low level heuristic.

In order to observe the effect of memory
length via different combinations of negative
adaptation {subtractive, divisional, root} and
upper bound for the utility values {20, 40,
60, 80}experiments have been performed on
modified Toronto problem instances. As a total
twelve different choices are executed for each
data and each choice is ranked from 1 (best)
to 12 (worst) using the results from the runs.
The average rank of a choice over all data and

the related standard deviation are provided in
Figure 4.

Determining the best adaptation rate, which
is also vital to adjust the memory length, seems
to be a key issue in fully utilising a reinforce-
ment learning scheme within a hyper-heuristic.
Different adaptation rates might yield differ-
ent performances. The results show that the
RL1 heuristic selection method with a utility
upper bound of 40 delivers the best average
performance when combined with the great
deluge method as a hyper-heuristic. Yet, this
performance variation is not statistically better
than the rest.

Using the best configuration from the pre-
vious set of experiments, another experiment
is performed over modified Toronto problem
instances to compare the average performances
of utility based heuristic selection schemes;
max and overAvr. Figure 5 summarises the
experimental results. Maximal utility selection
performs slightly better than overAvr with an
average rank of 1.42 for the modified problem
instances {car91 I, car92 I, kfu93, lse91, pur93
I, rye92, ute92}. There is a tie for sta83 I. Still,
the performance difference between max and
overAvr is not statistically significant. There
might still be potential for a future use of this
approach, as, in general, overAvr shows success
in solving problem instances with relatively
high conflict densities.

The reinforcement learning heuristic
selection method, which is referred to as RL1,
utilises additive reward and subtractive pun-
ishment schemes with a utility upper bound
of 40 and max. RL1 is combined with great
deluge and tested against simple random –
great deluge hyper-heuristic during the final
set of experiments. The results are provided
in Table 5. The percentage improvement in
the table uses whichever approach generates
a better result (average best of fifty trials) as
the baseline for comparison. The simple ran-
dom – great deluge hyper-heuristic generates
better average performance for eight problem
instances. It is especially successful in solv-
ing the Yeditepe problem instances which are
smaller and have low conflict densities when

50 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

compared with the modified Toronto instances.
Yet, RL1 improves the performance of simple
random hyper-heuristic with the great deluge
move acceptance on eleven problem instances
(out of twenty one problem instances), and for
two problem instances there is a tie.

Finally, RL1 – great deluge is compared to
two previous studies. Bilgin et al. (2007) showed
that the choice function – simulated annealing
hyper-heuristic, out of thirty five approaches,
performs the best for examination timetabling.
In a recent study, Özcan et al. (2009) introduced
a new move acceptance strategy that can be used
in hyper-heuristics. The experiments resulted
in the success of a simple random – late accep-

tance hyper-heuristic, performing even better
than choice function – simulated annealing.
Both of these approaches are compared to the
RL1 – great deluge in Table 6.

A hyper-heuristic learns how to make good
moves through both heuristic selection and
move acceptance. If a move is rejected, then
the selected heuristic is annulled. Hence, if a
hyper-heuristic uses a simple random heuristic
selection, it does not imply that there is no
learning within that hyper-heuristic. The late
acceptance strategy uses a fixed length memory
to hold the quality of some previously visited
solutions. Simple random heuristic selection
diversifies the search, while the late acceptance

Figure 3. Plot of utility value for each low level heuristic and quality versus iteration on sta83 I
using the reinforcement learning – great deluge hyper-heuristic based on (a) subtractive, (b) di-
visional and (c) root negative adaptation rates with max, utility upper bound=40, respectively

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 51

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 4. Average rank of hyper-heuristics using different heuristic selection methods {RL1,
RL2, RL3} with a utility upper bound of (a) 20, (b) 40, (c) 60 and (d) 80 over modified Toronto
instances

Figure 5. Comparison of utility value based heuristic selection schemes over modified Toronto
instances based on their average ranks

52 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

strategy intensifies the search process by ap-
proving the better moves based on its memory.
This course of action can also be considered to
be learning. Reinforcement learning not only
improves on simple random heuristic selection
when combined with great deluge but it also
generates better results as compared to another
learning hyper-heuristic; choice function –
simulated annealing. Moreover, its performance
is comparable to the performance of the simple
random – late acceptance hyper-heuristic.

6 CoNClusioN

In this article, a hyper-heuristic can be thought
of as a methodology that guides the search
process at a high level by controlling a set of
perturbation low level heuristics. A single point
search hyper-heuristic framework that com-
bines successive stages of heuristic selection
and move acceptance is employed during the
experiments. It has been observed in Bilgin et al.
(2007) that simple random heuristic selection in
a great deluge based hyper-heuristic performed
well for solving an examination timetabling

Table 5. Comparison of reinforcement learning and simple random heuristic selection within
a hyper-heuristic using the great deluge acceptance move method. “≥” and “≈” indicate “is
better than” and “delivers a similar performance”, respectively. ‘Percentage improvement’
uses the average best quality obtained in fifty runs for the better approach as the baseline for
comparison.

Instance Comparison %-improv.

car91 I RL1–GD ≥ SR–GD 1.70

car92 I RL1–GD ≥ SR–GD 1.68

ear83 I RL1–GD ≥ SR–GD 2.02

hecs92 I SR–GD ≥ RL1–GD 11.85

kfu93 RL1–GD ≥ SR–GD 2.09

lse91 RL1–GD ≥ SR–GD 2.47

pur93 I SR–GD ≥ RL1–GD 0.32

rye92 RL1–GD ≥ SR–GD 3.43

sta83 I RL1–GD ≥ SR–GD 0.06

tre92 SR–GD ≥ RL1–GD 5.05

uta92 I SR–GD ≥ RL1–GD 0.23

ute92 RL1–GD ≥ SR–GD 0.28

yor83 I RL1–GD ≥ SR–GD 1.13

yue20011 RL1–GD ≈ SR–GD 0.00

yue20012 RL1–GD ≥ SR–GD 0.53

yue20013 RL1–GD ≈ SR–GD 0.00

yue20021 SR–GD ≥ RL1–GD 1.49

yue20022 SR–GD ≥ RL1–GD 0.83

yue20023 SR–GD ≥ RL1–GD 0.71

yue20031 RL1–GD ≥ SR–GD 5.26

yue20032 SR–GD ≥ RL1–GD 0.88

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 53

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

problem encountered at Yeditepe University
every semester. The same problem is used as a
case study to investigate reinforcement learning
with different components as heuristic selection
methods in place of simple random.

There are different ways of implementing
the great deluge move acceptance. In this study,
a linear decreasing rate is adopted as suggested
in previous studies (Bilgin et al., 2007; Kendal
and Mohamad, 2004). Additionally, CPU time is
used as a termination criterion and hence, CPU
time is used as a part of the level decreasing
scheme. This level sets a goal for the chosen
heuristic in the case of a worsening move after its
invocation. The resultant bad move is required
to have a better quality than the goal, otherwise
it is rejected. Using CPU time within the great
deluge provides an additional side benefit. The
running times of low level heuristics might be
different. If a heuristic takes a short time to
execute, then the expectation on the quality of
the resultant move is lower as compared to a
heuristic which takes a longer time to execute.
This strategy seems to be viable and great del-

uge based on this strategy performs well as a
hyper-heuristic component (Bilgin et al., 2007;
Özcan et al., 2008).

A learning hyper-heuristic usually attempts
to follow the best moves within a given period of
time using some type of memory to make better
future decisions. Bai et al. (2007b) observed that
memory length is vital in learning and that the
use of a learning mechanism with short term
memory combined with a simulated annealing
move acceptance generated the best results in
their experiments over a set of course timeta-
bling problems. They used weighted adaptation
and tested various learning rates that adjust
the influence of rewards compiled at different
stages of search. In this study, other factors
regarding the memory that affect the learning
process, such as adaptation rate, lower and upper
bounds on the utility values are identified and
tested using relatively short memory lengths as
suggested before. Furthermore, two different
heuristic selection strategies, based on the util-
ity values, are assessed. Considering only the
adaptation rates, the results support the previous

Table 6. Comparison of RL1 – great deluge to the previous studies; (1) choice function – simulated
annealing (Bilgin et al., 2007), (2) simple random – late acceptance (Özcan et al., 2009). Each
approach is ranked from 1 (best) to 3 (worst) for each modified Toronto problem instance.

Instance RL1–GD (1) CF–SA (2) SR–LAS

car91 I 2 3 1

car92 I 1 3 2

ear83 I 1 2 3

hecs92 I 1 3 2

kfu93 1 3 2

lse91 2 3 1

pur93 I 2 3 1

rye92 2 3 1

sta83 I 1 3 2

tre92 1 3 2

uta92 I 2 3 1

ute92 3 1 2

yor83 I 2 3 1

avg. 1.62 2.77 1.62

54 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

findings in Nareyek (2003). The combination
of slow adaptation rates (additive/subtractive)
seems to perform the best. The reinforcement
learning – great deluge hyper-heuristic with
the settings {lower bound=0, upper bound=40,
heuristic selection strategy=max, positive
adaptation rate =additive, negative adaptation
rate=subtractive} improves the performance of
the simple random – great deluge hyper-heu-
ristic for solving the examination timetabling
problem instances studied in this article.

The choice of reinforcement learning
heuristic selection components affects the
memory length which in turn also affects the
intensification and diversification processes
during the search. The set of low level heu-
ristics contains neighbourhood operators that
attempt to resolve conflicts due to a specific
constraint type without considering whether
the move will cause other constraint violations
or not. The reinforcement heuristic selection
chooses a constraint based heuristic as long as
a given solution is improved in terms of overall
quality. If the same heuristic starts generating
worsening moves, the reinforcement learning
heuristic selection method still supports the
selection of the same heuristic until its utility
value decreases to the same value as another
one (or others). As soon as there is more than
one low level heuristic with the same utility
value, one of them is chosen randomly to give
(another) chance to the other heuristic(s) for
improving the candidate solution in hand. The
intensification and diversification processes
over the problem domain occur as a result of a
dynamic interaction between heuristic selection,
move acceptance and low level heuristics. The
intensification process is activated whenever
an improving move is accepted and continues
as long as an improvement in the overall qual-
ity is achieved. Diversification arises in three
ways which is mainly based on the great deluge
move acceptance. Firstly, whenever there is
a worsening move, the intensification phase
ends. This worsening move might still be ac-
cepted by the great deluge allowing a jump to

other promising regions of the search space.
Secondly, a low level heuristic is included
within the hyper-heuristic that perturbs a given
candidate solution randomly using a small step
size. If this heuristic is selected for invocation,
it acts as a diversification mechanism. Finally,
the random choice, in the case of equal utility
values, provides an additional diversification
mechanism. The reinforcement learning – great
deluge hyper-heuristic with the given low level
heuristics attempts to balance intensification and
diversification automatically. It turns out to be
successful in this attempt as this hyper-heuristic
delivers a good performance over the Yeditepe
University examination timetabling problem.

refereNCes

Abdullah, S., Ahmadi, S., Burke, E. K., & Dror,
M. (2007). Investigating Ahuja-Orlins large neigh-
bourhood search for examination timetabling.
OR-Spektrum, 29(2), 351–372. doi:10.1007/s00291-
006-0034-7

Alkan, A., & Özcan, E. (2003). Memetic algo-
rithms for timetabling. In Proceedings of 2003
IEEE Congress on Evolutionary Computation (pp.
1796-1802).

Anagnostopoulos, A., Michel, L., Hentenryck, P.
V., & Vergados, Y. (2006). A simulated annealing
approach to the traveling tournament problem.
Journal of Scheduling, 9, 177–193. doi:10.1007/
s10951-006-7187-8

Ayob, M., & Kendall, G. (2003). A monte carlo
hyper-Heuristic to optimise component placement
sequencing for multi head placement machine. In
Proceedings of the International Conference on Intel-
ligent Technologies (InTech’03) (pp. 132-141).

Azimi, Z. N. (2005). Hybrid heuristics for exami-
nation timetabling problem. Applied Mathematics
and Computation, 163(2), 705–733. doi:10.1016/j.
amc.2003.10.061

Bai, R., Blazewicz, J., Burke, E., Kendall, G., &
McCollum, B. (2007a). A simulated annealing
hyper-heuristic methodology for flexible deci-
sion support (Computer Science Tech. Rep. No.
NOTTCS-TR-2007-8). Nottingham, UK: University
of Nottingham.

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 55

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Bai, R., Burke, E. K., Kendall, G., & McCollum,
B. (2007b). Memory length in hyper-heuristics: an
empirical study. In Proceedings of 2007 IEEE Sym-
posium on Computational Intelligence in Scheduling
(CISched2007) (pp. 173-178).

Bai, R., & Kendall, G. (2003). An investigation of
automated planograms using a simulated annealing
based hyper-heuristics. In T. Ibaraki, K. Nonobe,
& M. Yagiura (Ed.), Meta-heuristics: Progress as
Real Problem Solvers, selected papers from the 5th
Metaheuristics International Conference (MIC’03)
(pp. 87-108). New York: Springer.

Bilgin, B., Özcan, E., & Korkmaz, E. E. (2007). An
experimental study on hyper-heuristics and exam
scheduling. In Proceedings of the 6th International
Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT’06) (LNCS 3867, pp.
394-412).

Broder, S. (1964). Final examination schedul-
ing. Communications of the ACM, 7(8), 494–498.
doi:10.1145/355586.364824

Burke, E., Bykov, Y., Newall, J. P., & Petrovic,
S. (2003). A time-predefined approach to course
timetabling. [YUJOR]. Yugoslav Journal of Op-
erations Research, 13(2), 139–151. doi:10.2298/
YJOR0302139B

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan,
E., & Rong, Q. (2009b). A survey of hyper-heuristics
(Computer Science Tech. Rep. No. NOTTCS-TR-
SUB-0906241418-2747). Nottingham, UK: Univer-
sity of Nottingham.

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan,
E., & Woodward, J. R. (2009a). Exploring hyper-
heuristic methodologies with genetic programming.
In C. L. Mumford & L. C. Jain (Eds.), Computational
intelligence: Collaboration, fusion and emergence
(pp. 177-201). New York: Springer.

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan,
E., & Woodward, J. R. (2009c). A classification of
hyper-heuristic appraoches (Computer Science Tech.
Rep. No. NOTTCS-TR-SUB-0907061259-5808).
Nottingham, UK: University of Nottingham.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross,
P., & Schulenburg, S. (2003a). Hyper-heuristics: An
emerging direction in modern search technology. In
F. W. Glover & G. A. Kochenberger (Ed.), Handbook
of Metaheuristics (Vol. 57, pp. 457-474). Dordrecht,
The Netherlands: Kluwer International Publishing.

Burke, E., Kendall, G., & Soubeiga, E. (2003b).
A tabu-search hyper-heuristic for timetabling
and rostering. Journal of Heuristics, 9, 451–470.
doi:10.1023/B:HEUR.0000012446.94732.b6

Burke, E. K., Dror, M., Petrovic, S., & Qu, R. (2005).
Hybrid graph heuristics within a hyper-heuristic
approach to exam timetabling problems. In B. L.
Golden, S. Raghavan, & E. A. Wasil (Ed.), The next
wave in computing, optimization, and decision tech-
nologies: Proceedings of the 9th Informs Computing
Society Conference (pp. 79-91). Springer.

Burke, E. K., Elliman, D. G., Ford, P. H., & Weare,
R. F. (1996a). Examination timetabling in British
universities - a survey. In E. K. Burke & P. Ross
(Eds.), Selected Papers from the 1st International
Conference on the Practice and Theory of Automated
Timetabling, Edinburgh (LNCS 1153, pp.76-92).

Burke, E. K., McCollum, B., Meisels, A., Petrovic,
S., & Qu, R. (2007). A graph-based hyper-heuristic
for educational timetabling problems. European
Journal of Operational Research, 176(1), 177–192.
doi:10.1016/j.ejor.2005.08.012

Burke, E. K., & Newall, J. P. (2004). Solving
examination timetabling problems through adap-
tion of heuristic orderings: Models and algorithms
for planning and scheduling problems. Annals of
Operations Research, 129, 107–134. doi:10.1023/
B:ANOR.0000030684.30824.08

Burke, E. K., Newall, J. P., & Weare, R. F. (1996b). A
memetic algorithm for university exam timetabling.
In E. K. Burke & P. Ross (Eds.), Selected Papers
from the 1st International Conference on the Practice
and Theory of Automated Timetabling, Edinburgh
(LNCS 1153, pp. 241-250).

Burke, E. K., Petrovic, S., & Qu, R. (2006). Case
based heuristic selection for timetabling problems.
Journal of Scheduling, 9, 115–132. doi:10.1007/
s10951-006-6775-y

Caramia, M., & Dell’Olmo, P. (2007). Coupling
stochastic and deterministic local search in ex-
amination timetabling. Operations Research, 55(2).
doi:10.1287/opre.1060.0354

Caramia, M., DellOlmo, P., & Italiano, G. F. (2001).
New algorithms for examination timetabling. In S.
Naher & D. Wagner (Eds.), Algorithm Engineering
4th International Workshop (WAE’00) (LNCS 1982,
pp. 230-241).

56 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Carter, M. W. (1986). A survey of practical ap-
plications of examination timetabling algorithms.
Operations Research, 34, 193–202. doi:10.1287/
opre.34.2.193

Carter, M. W., & Laporte, G. (1996a). Recent de-
velopments in practical examination timetabling. In
E. K. Burke & P. Ross (Eds.), Selected Papers from
the 1st International Conference on the Practice
and Theory of Automated Timetabling, Edinburgh
(LNCS 1153, pp. 3-21).

Carter, M. W., Laporte, G., & Lee, S. (1996b).
Examination timetabling: Algorithmic strategies
and applications. The Journal of the Operational
Research Society, 47(3), 373–383.

Casey, S., & Thompson, J. (2003). GRASPing the
examination scheduling problem. In E. K. Burke
& P. De Causmaecker (Eds.), Practice and theory
of automated timetabling: Selected Papers from
the 4th International Conference (LNCS 2740, pp.
232-244).

Chakhlevitch, K., & Cowling, P. I. (2008). Hyper-
heuristics: Recent developments. In Adaptive and
Multilevel Metaheuristics (pp. 3-29).

Chen, P.-C., Kendall, G., & Berghe, G. V. (2007). An
ant based hyper-heuristic for the travelling tourna-
ment problem. In Proceedings of IEEE Symposium
of Computational Intelligence in Scheduling (CIS-
ched’07) (pp. 19-26).

Cheong, C. Y., Tan, K. C., & Veeravalli, B. (2007).
Solving the exam timetabling problem via a multi-
objective evolutionary algorithm – a more general
approach. In Proceedings of the IEEE Symposium
on Computational Intelligence in Scheduling (CI-
Sched’07) (pp. 165-172).

Cole, A. J. (1964). The preparation of examina-
tion timetables using a small-store computer.
The Computer Journal, 7, 117–121. doi:10.1093/
comjnl/7.2.117

Corr, P. H., McCollum, B., McGreevy, M. A. J., &
McMullan, P. (2006). A new neural network based
construction heuristic for the examination timetabling
problem. In T. P. Runarsson et al. (Eds.), PPSN IX
(LNCS 4193, pp. 392-401).

Cowling, P., & Chakhlevitch, K. (2003). Hyper-
heuristics for managing a large collection of low level
heuristics to schedule personnel. In Proceedings of
the IEEE Congress on Evolutionary Computation
(CEC’03) (pp. 1214-1221).

Cowling, P., Kendall, G., & Han, L. (2002). An inves-
tigation of a hyperheuristic genetic algorithm applied
to a trainer scheduling problem. In Proceedings of
the IEEE Congress on Evolutionary Computation
(CEC’02) (pp. 1185-1190).

Cowling, P., Kendall, G., & Soubeiga, E. (2001a). A
hyperheuristic approach to scheduling a sales summit.
In Proceedings of the 3rd International Conference
on Practice and Theory of Automated Timetabling
(PATAT’00) (pp. 176-190). Springer-Verlag.

Cowling, P., Kendall, G., & Soubeiga, E. (2001b).
A parameter-free hyperheuristic for scheduling a
sales summit. In Proceedings of 4th Metaheuristics
International Conference (MIC’01) (pp. 127-131).

Cuesta-Canada, A., Garrido, L., & Terashima-Marin,
H. (2005). Building hyper-heuristics through ant
colony optimization for the 2d bin packing problem.
In Proceedings of the 9th International Conference
on Knowledge-Based Intelligent Information and
Engineering Systems (KES’05) (LNCS 3684, pp.
654-660).

Denzinger, J., Fuchs, M., & Fuchs, M. (1997). High
performance ATP systems by combining several ai
methods. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence
(IJCAI 97) (pp. 102-107).

Di Gaspero, L., & Schaerf, A. (2001). Tabu search
techniques for examination timetabling. In E. K.
Burke & W. Erben (Eds.), Selected Papers from
the 3rd International Conference on the Practice
and Theory of Automated Timetabling (PATAT’00)
(LNCS 2079, pp. 104-117).

Dowsland, K., & Thompson, J. (2005). Ant colony
optimization for the examination scheduling prob-
lem. The Journal of the Operational Research
Society, 56(4), 426–438. doi:10.1057/palgrave.
jors.2601830

Dowsland, K. A., Soubeiga, E., & Burke, E. (2007).
A simulated annealing hyper-heuristic for deter-
mining shipper sizes. European Journal of Opera-
tional Research, 179(3), 759–774. doi:10.1016/j.
ejor.2005.03.058

Dueck, G. (1993). New optimization heuristics:
the great deluge algorithm and the record-to-record
travel. Journal of Computational Physics, 104, 86–92.
doi:10.1006/jcph.1993.1010

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 57

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Erben, W. (2001). A grouping genetic algorithm for
graph colouring and exam timetabling. In K. Burke
& W. Erben (Eds.), Proceedings of the 3rd Inter-
national Conference on the Practice and Theory of
Automated Timetabling (PATAT’00) (LNCS 2079,
pp. 132-156).

Ergul, A. (1996). GA-based examination scheduling
experience at Middle East Technical University. In
E. K. Burke & P. Ross (Eds.), Selected Papers from
the 1st International Conference on the Practice
and Theory of Automated Timetabling, Edinburgh
(LNCS 1153, pp. 212-226).

Ersoy, E., Özcan, E., & Uyar, S. (2007). Memetic
algorithms and hyperhill-climbers. In Proceedings
of the 3rd Multidisciplinary International Scheduling
Conference: Theory and Applications (MISTA’07)
(pp. 156-166).

Even, S., Itai, A., & Shamir, A. (1976). On the
complexity of timetable and multicommodity Flow
problems. SIAM Journal on Computing, 5(4),
691–703. doi:10.1137/0205048

Fisher, H., & Thompson, G. L. (1961). Probabilistic
learning combinations of local job-shop scheduling
rules. Paper presented at the Factory Scheduling
Conference, Carnegie Institue of Technology.

Han, L., & Kendall, G. (2003). An investigation of
a tabu assisted hyper-heuristic genetic algorithm.
Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’03), 3, (pp. 2230-2237).

Kaelbling, L. P., Littman, M., & Moore, A. (1996).
Reinforcement learning: A survey. Journal of Arti-
ficial Intelligence Research, 4, 237–285.

Keller, R. E., & Poli, R. (2007). Cost-benefit inves-
tigation of a genetic-programming hyper-heuristic.
In Proceedings of the 8th International Conference
on Artificial Evolution (EA’07), Tours, France (pp.
13-24).

Kendall, G., & Hussin, N. M. (2005). Tabu search
hyper-heuristic approach to the examination timeta-
bling problem at university of technology MARA.
In E. K. Burke and M. Trick (Eds.), Proceedings of
the 5th International Conference on the Practice
and Theory of Automated Timetabling (PATAT’04)
(LNCS 3616, pp. 270-293).

Kendall, G., & Mohamad, M. (2004). Channel assign-
ment in cellular communication using a great deluge
hyper-heuristic. In Proceedings of the 12th IEEE
International Conference on Network (ICON’04)
(pp. 769-773).

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983).
Optimization by simulated annealing. Science, 220,
671–680. doi:10.1126/science.220.4598.671

Marin, H. T. (1998). Combinations of GAs and CSP
strategies for solving examination timetabling prob-
lems. Unpublished PhD thesis, Instituto Tecnologico
y de Estudios Superiores de Monterrey.

Marín-Blázquez, J., & Schulenburg, S. (2005). A
hyper-heuristic framework with XCS: Learning to
create novel problem-solving algorithms constructed
from simpler algorithmic ingredients. In T. Kovacs,
X. Llorà, K. Takadama, P. Lanzi, W. Stolzmann, &
S. Wilson (Eds.), Proceedings of the 8th Interna-
tional Workshop on Learning Classifier Systems
(IWLCS’05) (LNCS 4399, pp. 193-218).

Merlot, L. T. G., Boland, N., Hughes, B. D., &
Stuckey, P. J. (2002). A hybrid algorithm for the
examination timetabling problem. In E. K. Burke
& P. De Causmaecker (Eds.), Proceedings of the
4th International Conference on the Practice and
Theory of Automated Timetabling (PATAT’02) (LNCS
1153, pp. 207-231).

Nareyek, A. (2003). Choosing search heuristics by
non-stationary reinforcement learning. In Meta-
heuristics: Computer decision-making (pp. 523-544).
Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Ouelhadj, D., & Petrovic, S. (2008). A cooperative
distributed hyper-heuristic framework for scheduling.
In Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics (SMC’08) (pp.
2560-2565).

Özcan, E., Bilgin, B., & Korkmaz, E. E. (2008). A
comprehensive analysis of hyper-heuristics. Intel-
ligent Data Analysis, 12, 3–23.

Özcan, E., Bykov, Y., Birben, M., & Burke, K.
E. (2009). Examination timetabling using late ac-
ceptance hyper-heuristics. In Proceedings of the
2009 IEEE Congress on Evolutionary Computation
(CEC’09) (pp. 997-1004).

Özcan, E., & Ersoy, E. (2005). Final exam sched-
uler – FES. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC’05) (Vol. 2,
pp. 1356-1363).

Paquete, L. F., & Fonseca, C. M. (2001). A study
of examination timetabling with multiobjective
evolutionary algorithms. In Proceedings of the 4th
Metaheuristics International Conference (MIC’01)
(pp. 149-154).

58 International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Petrovic, S., Patel, V., & Yang, Y. (2005). Exami-
nation timetabling with fuzzy constraints. In E. K.
Burke & M. Trick (Eds.), Proceedings of the 5th
International Conference on the Practice and Theory
of Automated Timetabling (PATAT’05) (LNCS 3616,
pp. 313-333), Springer.

Petrovic, S., Yang, Y., & Dror, M. (2007). Case-based
selection of initialisation heuristics for metaheuristic
examination timetabling. Expert Systems with Ap-
plications: An International Journal, 33(3), 772–785.
doi:10.1016/j.eswa.2006.06.017

Pillay, N., & Banzhaf, W. (2008). A study of heuristic
combinations for hyper-heuristic systems for the
uncapacitated examination timetabling problem.
European Journal of Operational Research. doi:.
doi:10.1016/j.ejor.2008.07.023

Qu, R., Burke, E. K., & McCollum, B. (2008). Adap-
tive automated construction of hybrid heuristics for
exam timetabling and graph colouring problems.
European Journal of Operational Research, 198(2),
392–404. doi:10.1016/j.ejor.2008.10.001

Qu, R., Burke, E. K., McCollum, B., Merlot, L. T., &
Lee, S. Y. (2009). A survey of search methodologies
and automated system development for examination
timetabling. Journal of Scheduling, 12(1), 55–89.
doi:10.1007/s10951-008-0077-5

Rattadilok, P., Gaw, A., & Kwan, R. (2005). Distrib-
uted choice function hyper-heuristics for timetabling
and scheduling. In Proceedings of the 5th Interna-
tional Conference on the Practice and Theory of
Automated Timetabling (PATAT’2004) (pp. 51-67).

Ross, P. (2005). Hyper-heuristics. In: E. K. Burke
& G. Kendall (Eds.), Search methodologies: In-
troductory tutorials in optimization and decision
support techniques (Ch. 17, pp. 529-556). New
York: Springer.

Sutton, R. S., & Barto, A. G. (1998). Reinforce-
ment learning: An introduction. Cambridge, MA:
MIT Press.

Terashima-Marin, H. T., Moran-Saavedra, A., &
Ross, P. (2005). Forming hyper-heuristics with GAs
when solving 2D-regular cutting stock problems. In
Proceedings of the 2005 IEEE Congress on Evolution-
ary Computation (Vol. 2, pp. 1104-1110).

Terashima-Marin, H. T., Ross, P., & Valenzuela-Ren-
don, M. (1999). Evolution of constraint satisfaction
strategies in examination timetabling. In Proceed-
ings of the Genetic and Evolutionary Computation
Conference (GECCO’99) (pp. 635-642).

Tereshima-Marin, H. T., Zarate, C. J. F., Ross, P.,
& Valenzuela-Rendon, M. (2007). Comparing two
models to generate hyper-heuristics for the 2d-regular
bin-packing problem. In Proceedings of the 9th
Annual Conference on Genetic and Evolutionary
Computation (GECCO’07) (pp. 2182-2189).

Thompson, J. M., & Dowsland, K. A. (1998). A robust
simulated annealing based examination timetabling
system. Computers & Operations Research, 25,
637–648. doi:10.1016/S0305-0548(97)00101-9

Vazquez-Rodriguez, J. A., Petrovic, S., & Salhi,
A. (2007). A combined meta-heuristic with hyper-
heuristic approach to the scheduling of the hybrid
flow shop with sequence dependent setup times and
uniform machines. In P. Baptiste, G. Kendall, A.
Munier-Kordon, & F. Sourd (Eds.), Proceedings of
the 3rd Multi-disciplinary International Scheduling
Conference: Theory and Applications (MISTA’07),
Paris (pp. 506-513).

Wong, T., Cote, P., & Gely, P. (2002). Final exam
timetabling: a practical approach. In . Proceedings
of the IEEE Canadian Conference on Electrical and
Computer Engineering, 2, 726–731.

Ender Ozcan is a science and innovation lecturer with the Automated Scheduling, Optimisation
and Planning (ASAP)Research Group in the School of Computer Science at the University of Not-
tingham, UK. He received his PhD from the Department of Computer and Information Science at
Syracuse University, NY, USA in 1998. He worked as a lecturer in the Department of Computer
Engineering at Yeditepe University, Istanbul, Turkey from 1998-2007. He established and led the
ARTIficial Intelligence research group from 2002 and awarded two research grants from TUBITAK.
He served as the deputy head of the Department from 2004-2007. Dr. Ozcan joined the ASAP
group as a senior research fellow in 2008. He has been serving as an executive committee member
for the LANCS initiative, which is one of the largest Science and Innovation Rewards given by
EPSRC (Engineering and Physical Sciences Research Council, UK). His research interests and

International Journal of Applied Metaheuristic Computing, 1(1), 39-59, January-March 2010 59

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

activities lie at the interface of computer science and operational research. He has been leading
studies in the field of metaheuristics focusing on evolutionary algorithms (memetic algorithms,
PSO), hyper-heuristics, and their applications to the real-world and theoretical problems. Dr.
Ozcan has published over 55 refereed papers. He has been a member of the program committees
in major international conferences and refereeing for reputable journals. He has co-organised five
workshops on hyper-heuristics and metaheuristics and he is the guest co-editor of the forthcoming
first special issue on hyper-heuristics (Journal of Heuristics, 2009).

Mustafa Misir received his BSc and MSc degrees in computer engineering from Yeditepe University
in 2007 and 2008, respectively. He was awarded as a student assistant during his undergraduate
study. He worked as a teaching and research assistant during his graduate study in the Artificial
Intelligence research group at Yeditepe University. Currently, he is studying towards PhD in the
Department of Computer Science (Informatics) at Katholieke Universiteit Leuven as a research
fellow. He is also working as a researcher in the CODeS Research Group, Katholieke Universiteit
Leuven, Campus Kortrijk and IT Research Group, KaHo Sint-Lieven. His research interests include
combinatorial optimization, hyper-heuristics, meta-heuristics and reinforcement learning.

Gabriela Ochoa is a senior research fellow with the Automated Scheduling, Optimisation and
Planning (ASAP) Research Group in the School of Computer Science at the University of Notting-
ham, since October 2006, where she coordinates a project on ‘Automated Heuristic Design’. She
received her PhD in computer science and artificial intelligence from the University of Sussex, UK,
in 2001. Gabriela Ochoa has been involved with inter-disciplinary research, and foundations and
applications of evolutionary algorithms since the mid 90s, and more recently with meta-heuristics
and hyper-heuristics. She has published over 30 refereed research articles, serves on the program
committees of major conferences in evolutionary computation and meta-heuristics, and has refereed
for reputable journals in these fields. Ochoa has recently dictated a tutorial on hyper-heuristics,
and proposed and co-organised two workshops on hyper-heuristic methodologies held as part of
reputable evolutionary computation conferences. She is the guest co-editor of the first special issue
on hyper-heuristics (Journal of Heuristics, 2009).

Edmund K. Burke is dean of the Faculty of Science at the University of Nottingham and he leads
the Automated Scheduling, Optimisation and Planning (ASAP) Research Group in the School of
Computer Science. He is a member of the EPSRC Strategic Advisory Team for Mathematics. He is
a fellow of the Operational Research Society and the British Computer Society and he is a member
of the UK Computing Research Committee (UKCRC). Prof. Burke is editor-in-chief of the Journal
of Scheduling, area editor (for combinatorial optimisation) of the Journal of Heuristics, associate
editor of the INFORMS Journal on Computing, associate editor of the IEEE Transactions on Evo-
lutionary Computation and a member of the editorial board of Memetic Computing. He is also the
research director of EventMAP Ltd. and a director of Aptia Solutions Ltd, both of which are spin
out companies from the ASAP group. Prof. Burke has played a leading role in the organisation of
several major international conferences in his research field in the last few years. He has edited/
authored 14 books and has published over 180 refereed papers. He has been awarded 47 externally
funded grants worth over £11M from a variety of sources including EPSRC, ESRC, BBSRC, EU,
Research Council of Norway, East Midlands Development Agency, HEFCE, Teaching Company
Directorate, Joint Information Systems Committee of the HEFCs and commercial organisations.
This funding portfolio includes being the principal investigator on a recently awarded EPSRC
Science and Innovation award of £2M, an EPSRC grant of £2.6M to investigate the automation of
the heuristic design process and an EPSRC platform grant worth £423K.

