
MISTA 2009

A self-organising hyper-heuristic framework

E. Özcan · M. Mısır · E. K. Burke

1 Introduction

Hyper-heuristics are heuristic management methodologies aiming a high level of gener-

ality in problem solving [1]. Most of the meta-heuristics or other approaches perform a

search over the solution space directly, whereas, hyper-heuristics as high level strategies

search the heuristic space, generated by a set of low-level heuristics. One of the hyper-

heuristic frameworks makes use of multiple perturbative (improvement) heuristics in

a single-point iterative search setting. At each step, one of the low level heuristics is

selected and applied to the candidate solution at hand. The resulting move is either

accepted or rejected based on some problem independent criteria. This study focuses

on such perturbative hyper-heuristics.

In [3], two types of low level heuristics are identified: mutational heuristics and hill

climbers. A mutational heuristic perturbs a given candidate solution in a systematic

way using a stochastic component without any expectation regarding to the change in

the quality of the solution. On the other hand, a hill climber returns a solution that has

either better or equal quality with the input solution. [3] investigates four different types

of perturbative hyper-heuristic frameworks that aim to make better use of multiple

mutational and hill climbing heuristics as illustrated in Figure 1: FA, FB , FC and FD.

Type A framework is the traditional framework where all low level heuristics are utilised

simultaneously. A type B framework also functions similar to a type A framework. The

Ender Özcan · Edmund K. Burke
University of Nottingham, School of Computer Science & IT
The Automated Scheduling, Optimisation and Planning (ASAP) Research Group
Jubilee Campus, Wollaton Road, Nottingham
NG8 1BB, UK
E-mail: {exo,ekb}@cs.nott.ac.uk

Mustafa Mısır *
Katholieke Universiteit Leuven, Department of Computer Science
Celestijnenlaan 200A
3001 Heverlee-Leuven/BELGIUM

KaHo Sint-Lieven, IT Research Group
Gebroeders Desmetstraat 1
9000 Gent/BELGIUM
E-mail: mustafa.misir@kahosl.be

only difference is that if the heuristic selection method chooses and applies a mutational

heuristic to the candidate solution, then a predefined hill climber is invoked afterwards.

If the chosen heuristic is a hill climber, the second process does not take place. The

resulting solution is fed into the move acceptance strategy. In type C framework, the

low level heuristic set contains only mutational heuristics. A predetermined hill climber

is applied following the chosen mutational heuristic. The last framework is the most

general framework. Type D framework uses two hyper-heuristics successively at each

iteration. The first hyper-heuristic manages a set of mutational heuristics, while the

second one manages a set of hill climbers. Both hyper-heuristics can be the same or each

hyper-heuristic mechanism can have its own heuristic selection and move acceptance

strategy. It is also possible to design a type D framework which passes information

between hyper-heuristics. The experimental results show that FC is superior to the

others including the traditional framework. Although FD has not performed well, this

might be due to the choice of hyper-heuristics which function independently and do

not communicate any information with each other. Notice that FC is a special case of

FD.

Hyper-heuristic

Domain barrier

Problem domain

all

low level

heuristics

If a

mutational

heuristic is

selected
HC

Hyper-heuristic

Domain barrier

Problem domain

mutational

low level

heuristics

HC

 Hyper-heuristic1

Domain barrier

Problem domain

mutational

low level

heuristics

Hyper-heuristic2

low level

hill

climbers

FB FC FD

Hyperheuristic

Domain barrier

Problem domain

all

low level

heuristics

FA

Fig. 1 Hyper-heuristic frameworks presented in [3] that make use of multiple mutational and
hill climbing (HC) heuristics.

In this study, a hyper-heuristic framework of type D is investigated. It is assumed

that the nature of each low level heuristics is not known. Reinforcement learning is used

as a mechanism to adaptively classify low level heuristics into two categories as more

likely to be mutational heuristics and hill climbers. Moreover, instead of two separate

hyper-heuristics, a unified single hyper-heuristic that self organises itself to operate as

a type D framework is utilised.

2 A self organising hyper-heuristic framework based on reinforcement

learning

Hyper-heuristic research values machine learning techniques to perform better choices

during the search process. Within the context of perturbative heuristics, these learning

techniques are utilised by the heuristic selection component. The most common ap-

proach is the reinforcement learning due to its simple structure and effectiveness. One

of the significant studies on reinforcement learning based hyper-heuristics is provided

by Nareyek (2004) in [2]. Depending on the performance of a given heuristic, it is either

rewarded or punished. This study investigates different rates for reward and punish-

ment as well as different heuristic selection mechanisms using the scores. This study

adapts the same idea, but employs a different strategy during the heuristic selection

process.

In our approach, we use +1 as a reward factor as suggested in [2]. For the punish-

ment, three different scoring schemes are utilised:

RL1 : wi = wi − 1 (1)

RL2 : wi = wi/2 (2)

RL3 : wi =
√

wi (3)

Given n heuristics, these scores indicate the individual performance of each low-level

heuristic. Moreover, they are used to generate two different heuristic partitions from

the whole low level heuristic set. These sets are dynamically determined based on the

average score of the whole low level heuristics at any given iteration:

avr =
∑
∀i wi/n (4)

Heuristics having a score below the average form the set C1 (C1={∀i; wi < avr}), while

heuristics having a score above or equal to the average form the set C2 (C2={∀i; wi ≥
avr}). Improving or Equal (IE) is preferred as move acceptance criteria, since it is

reported to be the best choice for the benchmark function optimisation in [3].

At any point of search, it is expected that the heuristics in C2 will be hill climbers

and the rest in C1 will be the mutational heuristics. The proposed hyper-heuristic

framework works in two consecutive stages by choosing a heuristic from C1 randomly,

applying it to the current solution and feeding the new solution into the move ac-

ceptance mechanism in the first stage. Then, the same procedure is followed for the

C2 heuristics in the second stage. We can categorise this hyper-heuristic as a type D

framework. Three reinforcement learning based hyper-heuristics of this type are tested

over 13 well-known mathematical benchmark functions (see [3] for more details). Each

hyper-heuristic denoted as FD1, FD2 and FD3 utilises different punishment rates as

provided in Equations 1, 2 and 3, respectively.

3 Results

During the experiments, Pentium IV 3 GHz LINUX (Fedora Core 8) machines having

2 Gb memories are used. Fifty runs are performed during each test on a benchmark

function. For a fair comparison between all algorithms, the experiments are terminated

if the execution time exceeds 600 CPU seconds or the expected fitness (Opt) is achieved.

Success rate denotes the ratio of successful runs in which the expected fitness is achieved

to the total number of runs. So, for instance, if an algorithm finds the optimum solution

for the given benchmark for each trial, then its success rate is 1.0.

The results are compared to the traditional reinforcement learning with maximal

utility selection. In Table 1,the ranking of each hyper-heuristic based on the success

rates and in case of equality based on the number of fitness evaluations are provided. 1

indicates the best hyper-heuristic, while 6 denotes the worst one. These rankings show

that self organising framework improves the traditional one that embeds reinforcement

Function Dim Opt RL1 RL2 RL3 FD1 FD2 FD3

Sphere 10 0.0 4.00 5.50 5.50 3.00 1.50 1.50
Step 10 0.0 5.00 4.00 1.00 3.00 6.00 2.00
Quartic 10 0.0 6.00 3.50 1.00 5.00 2.00 3.50
Foxhole 2 0.0 2.00 2.00 6.00 2.00 4.50 4.50
Rastrigin 10 0.0 1.00 5.00 6.00 4.00 3.00 2.00
Schewefel 10 0.0 6.00 5.00 4.00 1.00 2.00 3.00
Griewangk 10 0.0 2.00 4.50 4.50 1.00 4.50 4.50
Ackley 10 0.0 5.00 4.00 6.00 1.00 3.00 2.00
Easom 6 1.0 4.00 2.00 1.00 6.00 3.00 5.00
Schewefel’s
Double Sum 10 0.0 3.50 3.50 3.50 3.50 3.50 3.50
Royal Road 8 0.0 5.00 2.00 6.00 3.00 1.00 4.00
Goldberg 30 0.0 1.00 3.50 5.50 3.50 5.50 2.00
Whitley 6 0.0 5.00 6.00 3.00 2.00 4.00 1.00

avg. 3.81 3.88 4.08 2.92 3.35 2.96

Table 1 Ranks based on success rate and average number of fitness evaluations.

learning. The subtractive punishment rate turns out to be the best choice for negative

reinforcement considering the average rank of each hyper-heuristic. This study shows

that type D hyper-heuristics have potential. In this study, self organisation of the

heuristics is obtained by using the scores generated by reinforcement learning. It is

possible to design different self organising hyper-heuristics based on different strategies.

Acknowledgements The experiments were performed at Yeditepe University, Computer En-
gineering Department, Istanbul, Turkey.

References

1. Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-heuristics:
An emerging direction in modern search technology. In: F. Glover, G. Kochenberger (eds.)
Handbook of Metaheuristics, pp. 457–474. Kluwer (2003)

2. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In:
M.G.C. Resende, J.P. de Sousa (eds.) Metaheuristics: Computer Decision-Making, chap. 9,
pp. 523–544. Kluwer (2003)

3. Ozcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive survey of hyperheuristics. Intelligent
Data Analysis 12(1), 1–21 (2008)

