
OSCAR: Online Selection of Algorithm
Portfolios with Case Study on Memetic

Algorithms

Mustafa Mısır, Stephanus Daniel Handoko, Hoong Chuin Lau

School of Information Systems, Singapore Management University, Singapore
{mustafamisir, dhandoko, hclau}@smu.edu.sg

Abstract. This paper introduces an automated approach called OS-
CAR that combines algorithm portfolios and online algorithm selection.
The goal of algorithm portfolios is to construct a subset of algorithms
with diverse problem solving capabilities. The portfolio is then used to
select algorithms from for solving a particular (set of) instance(s). Tra-
ditionally, algorithm selection is usually performed in an offline manner
and requires the need of domain knowledge about the target problem;
while online algorithm selection techniques tend not to pay much at-
tention to a careful construction of algorithm portfolios. By combining
algorithm portfolios and online selection, our hope is to design a problem-
independent hybrid strategy with diverse problem solving capability. We
apply OSCAR to design a portfolio of memetic operator combinations,
each including one crossover, one mutation and one local search rather
than single operator selection. An empirical analysis is performed on the
Quadratic Assignment and Flowshop Scheduling problems to verify the
feasibility, efficacy, and robustness of our proposed approach.

1 Introduction

We propose in this paper a framework that combines the ideas of algorithm port-
folio and online selection. We call this framework OSCAR (Online SeleCtion
of Algorithm poRtfolio). Algorithm selection [7] essentially learns the mapping
between instance features and algorithmic performance, and this is usually per-
formed in an offline fashion, as the process is typically very computationally
intensive. The learned mapping can be utilized to choose the best algorithms
to solve unseen problem instances based on their features. Algorithm portfo-
lio [9,10] treats the algorithm selection problem in a broader perspective. The
goal is to construct a diverse suite of algorithms that altogether are capable of
solving a wide variety of problem instances, thus reducing the risk of failure.
In terms of online algorithm selection, Adaptive Operator Selection (AOS) [11]
deals with a single type of operators at a time, performs on-the-fly selection of
evolutionary operators. Selecting from the pool of all possible combinations of
crossover, mutation, and local search operators might be beneficial as this would
capture the correlation among the different types of operators, but it could be



feature
extraction

feature
selection

algorithm
clustering

portfolio
generation

OFFLINE

algorithm

selection

ONLINE

Fig. 1. Workflow of OSCAR

challenging for the AOS methods. Hyperheuristics [19] can be seen as generic
online algorithm selection methods that typically make use of a portfolio of very
simple algorithms.

This work is motivated by the objective to provide a rich generic algorithm
selection framework for solving diverse problem instances of a given target op-
timization problem. More specifically, we focus our attention on memetic algo-
rithms (MA) [1] that represent a generic evolutionary search technique for solv-
ing complex problems [2]. By interleaving global with local search, MA reaps the
benefit of the global convergence of the stochastic global search method as well
as the quick and precise convergence of the deterministic local search method
thereby avoiding the local optimum trap of deterministic search technique and
alleviating the slow, imprecise convergence of the stochastic search technique.
Like other evolutionary algorithms, however, the efficacy of MA depends on
the correct choice of operators and their parameters. Various evolutionary (i.e.
crossover, mutation) operators lead to different solution qualities [4]. For con-
strained problems, the choice of ranking operator is also important [5]. [6] focused
on the frequency of the local search, or in other words, whether local search is
needed or can be skipped, since it can be expensive computationally, and may
cause difficulty in escaping from local optimality (especially when the population
diversity is too low such that all individuals reside in the same basin of attrac-
tion). All the above works suggest that there is indeed a correlation between a
problem instance and the MA configuration that can render efficacious search.

Rather than relying primarily on the personal expertise or simply employing
the widely-used ones, automatic selection of the potentially efficacious operators
makes MA not only more likely to yield superior performance, but also easier
to use, even by those inexperienced users. In our context, an algorithm refers to
one combination of evolutionary operators that need to be successively applied
in each MA iteration. Dummy operator is introduced for each operator type to
cater for the possibility of not using any operator of that type. As shown in
Fig. 1, the algorithm portfolio is constructed offline via a series of operations
which encompass feature extraction, feature selection, algorithm clustering, and
portfolio generation. The resulting portfolio is then sent to an online selection
mechanism that performs on-the-fly selection of combination of operators in
each MA iteration. The efficacy of the proposed framework is then assessed
empirically on quadratic assignment problem (QAP) and flowshop scheduling
problem (FSP).



The contributions of the work presented in this paper is three-fold:

1. We propose OSCAR, a novel framework which takes the advantage of both
the algorithm portfolio and online selection paradigms. To our knowledge,
OSCAR is the first online selection of algorithms in a portfolio.

2. We generate problem-independent features for the construction of portfolio,
thereby eliminating the necessity of problem domain expertise.

3. We provide a means of identifying reasonable number of sufficiently diverse
combinations of operators for the evolutionary algorithm, such as the MA,
allowing AOS to capture the correlation among different types of operators.

The remainder of the paper is presented as follows. Section 2 reviews related
works in the literature. Section 3 introduces OSCAR and explains how it works
in detail. Section 4 presents and discusses the experimental results on QAP and
FSP. Finally, conclusion and future research directions are given in Section 5.

2 Related Works

Algorithm portfolios and (offline) selection have had a long history, and in the
following, we review some recent works. SATZilla [12] is a well-known algorithm
portfolio selection methodology that is particularly used to solve the SAT prob-
lem. It pursues a goal of providing a runtime prediction model for the SAT
solvers. A number of problem-specific features for a given SAT instance are used
to calculate the expected runtime of each algorithm in the portfolio. Its different
versions are consistently ranked among the top portfolio-based solvers in the
SAT competitions. 3S [13] utilised the resource constrained set covering prob-
lem with column generation to deliver solver schedules. Its superior performance
was shown on the SAT domain. A cost-sensitive hierarchical clustering model
was proposed in [14]. While the clustering model delivers a selection system, a
static solver schedule is generated by 3S. SAT and MaxSAT were used as the
application domains. Additionally, a Bayesian model combined with collabora-
tive filtering is introduced to solve the constraint satisfaction and combinatorial
auction problems in [15]. Unlike these studies, Hydra [16] addresses algorithm
portfolios using parameter tuning. A portfolio is constructed by combining a
particular solver with different parameter configurations provided by a version
of ParamILS, i.e. FocusedILS [17]. The effectiveness of Hydra was also shown
on SAT. Another tool developed for SAT, i.e. SATEnstein [18], targeted the al-
gorithm generation process via tuning. It considers a variety of design elements
for stochastic local search algorithms in the form of parameter tuning using
ParamILS.

In terms of online algorithm selection, existing studies mostly refer to the
terms Adaptive Operator Selection (AOS) [11] and Selection Hyper-heuristics
[19]. The main idea is to monitor the search progress while solving a prob-
lem instance to immediately make changes on the choice of algorithms. Besides
that, the online algorithm selection community deals with the algorithms and



problems where solutions can be shared. However, in the case of offline meth-
ods, solution sharing can be cumbersome thus usually ignored when multiple
algorithms are selected, like CPHydra [20]. Adaptive pursuit [21], multi-armed
bandits [11] and reinforcement learning (RL) [22] are some successful examples
of online selection.

3 OSCAR

Unlike most existing algorithm portfolio approaches that seek to deliver a port-
folio of single solvers, this paper focuses on building a portfolio of algorithm
combinations (even though our underlying approach can be used in the context
of portfolio of single solvers). Each combination consists of a crossover opera-
tor, a mutational heuristic and a local search method. Our goal is to generate
a small number of algorithm combinations with diverse performance that can
successfully solve a large set of instances from a given problem domain. In or-
der to have such a portfolio, it is initially required to generate a performance
database revealing the behavior of each combination. Behavior here is denoted as
the generic and problem-independent features primarily used in hyper-heuristic
studies such as [23]. A class of hyper-heuristics, i.e. selection hyper-heuristics,
aims at efficiently managing a given set of heuristics by selecting a heuristic(s)
at each decision step. Due to the selection element in hyper-heuristics and their
generic nature, we make use of the following features to characterize algorithm
combinations for memetic algorithms.

– Number of new best solutions: Nbest
– Number of improving solutions: Nimp
– Number of worsening solutions: Nwrs
– Number of equal quality solutions: Neql
– Number of moves: Nmoves
– Amount of improvement: 4imp
– Amount of worsening: 4wrs
– Total spent time: T

A pseudo-code for OSCAR is presented in Algorithm 1. The process starts
by collecting performance data regarding each algorithm combination ax. The
goal here is to perform a feature extraction about algorithms. For this purpose,
each instance iy is solved by a memetic algorithm successively using a randomly
selected algorithm combination ax. Algorithm 2 illustrates the basic memetic
algorithm implementation. It should be noted that the performance data gen-
eration process differs for the cases where offline algorithm selection is applied.
In the offline case, each algorithm is separately trained since these algorithms
neither interact nor share solutions. Considering that an online selection device
is employed and solutions are shared, it is vital to gather the performance data
by running all the algorithms while they are selected online and operating on
the same solutions.



Algorithm 1: OSCAR(A, Itrain, Itest, FS, C, OAS, BC)
Input : A: an algorithm with multiple operators to choose from, Itrain: a set

of training instances, Itest: a set of test instances, FS: a feature
selection method, C: a clustering algorithm, OAS: an online algorithm
selector, BC: criterion for algorithm comparison

Operator combination ax = cx + mx + lx where cx, mx and lx refer to crossover,
mutation and local search operators respectively
Performance vector for the algorithm combination ax on the instance iy:
P (ax, iy) = {p1(ax, iy), . . . , pk(ax, iy)}
Feature vector for the algorithm combination ax:
F (ax) = {p1(ax, i1), . . . , pk(ax, im)}
Feature extraction

1 F ← P = A(.) algorithm A is iteratively applied using randomly selected
operator combinations ax to gather performance data P for generating features
F
Feature selection

2 F ← FS(F )
Algorithm clustering

3 Cluster algorithm combinations: C(A,F )
Portfolio generation

4 Build portfolio using best algorithm combination from each cluster of C:
AP = {cl1 → a, . . . , clt → a} w.r.t. BC
Online selection

5 Sbest ← A(AP,OAS, Itest)

Algorithm 2: MA(c, m, l)

n: population size, k: number of newly produced individuals / solutions at each
generation

1 Initialisation: Generate a population of solutions: P (Si) for 1 ≤ i ≤ n
2 while !stoppingCriteria() do

k = 1
3 while c ≤ nc do
4 Apply a crossover: Sn+k = c(Sa, Sb)
5 Apply a mutation method: Sn+k = m(Sn+c)
6 Apply a local search operator: Sn+k = l(Sn+c)
7 k + +

end
8 updatePopulation(P )

end

The corresponding crossover (cx), mutation (mx) and local search (lx) opera-
tors of ax are applied in a relay fashion. The performance data generation process
ends after each instance is solved within a given time limit (tlimit). The resulting
performance data is used to generate features for each algorithm, F (ax). Each
feature vector is composed of the normalised versions of the following 7 features



for each instance: f1 = Nbest/T , f2 = Nimp/T , f3 = Nwrs/T , f4 = Neql/T ,
f5 = 4imp/T , f6 = 4wrs/T and f7 = T/Nmoves As a result, each algorithm
combination has #instances× 7 features.

After completing the feature extraction process, a feature selection or elimi-
nation [24] method is applied. Gini Importance1 [25] and Gain Ratio2 [26] were
used for feature selection purpose. Gini Importance is mostly used with Random
Forests to detect the effective features w.r.t. the given class information. Gain
Ratio is a information theoretic measure used to detect the effect of each feature
by checking the variations on the values of each feature.

Next, algorithm clustering is performed. k-means clustering is applied as the
clustering method C to identify the (dis-)similarity of the algorithm combina-
tions. The best performing algorithm combinations, one from each selected clus-
ter compose the portfolio during the portfolio generation process. During this
process, the clusters with operator combinations which couldn’t find any new
best solution are ignored. Of significant importance is that when a cluster man-
age to find some new best solution, that cluster must be part of the portfolio, no
matter how small the cluster may be. Such small cluster may in fact be the spe-
cial combination that works well only on some very specific problem instances.
The best combination for each cluster are then determined w.r.t. BC which is
the number of new best solutions found. The overall procedure is finalised by
applying the corresponding memetic algorithm with a given online selection ap-
proach OAS to the test instances Itest during the online selection phase. For
the experiments, uniform random selection is used as the OAS option.

4 Computational Results

For the memetic algorithm, the population size is set to 40. As many as 20
new individuals are generated during each generation. 4 crossovers, 1 mutation
operator and 3 local search heuristics are the available memetic operators. Since
the mutation operator needs a mutation rate to be set, 6 different values are
considered: 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. Setting the mutation rate to zero
actually means that the mutation operator is not used. In order to have the
same effect for the other two operator types, we added one dummy crossover
operator and one dummy local search heuristic. In total, 119 (5 crossovers ×
6 mutations × 4 local search - 13) operator combinations are generated. The
details of these memetic operators are given as follows:

– Crossover:

• CY CLE crossover: iteratively construct individuals by taking values
from one parent and appointing the location of a next value from the
second parent

1 using Scikit http://scikit-learn.org
2 using Java-ML http://java-ml.sourceforge.net/
3 no crossover + no mutation + no local search case is ignored

http://scikit-learn.org
http://java-ml.sourceforge.net/


• DISTANCE PRESERV ING crossover: outputs an individual where
the distance referring to the number of genes assigned to different loca-
tions should be the same for the both parents

• ORDER crossover: a subgroup of genes are taken from one parent and
the remaining genes come from the second parent respecting their order

• PARTIALLY MAPPED crossover: two randomly gene segments swap
and partial maps denoting the elements located at common loci are used
to change the conflicting genes with the swapped segment

– Mutation: perturbs a given individual based on a mutation rate
– Local search:
• BEST 2 OPT local search: attempts pairwise swap between 2 loci and

applies the one producing best improvement in an iterative manner
• FIRST 2 OPT local search: attempts pairwise swap between 2 loci in a

systematic fashion and applies the first one that produces improvement
in an iterative manner

• RANDOM 2 OPT local search: attempts pairwise swap between 2 loci
in a random order and applies the first one that produces improvement
in an iterative manner

For the training phase, tlimit is set to 300 seconds. The testing is performed
with the per-instance execution time limit of 30 minutes for 5 trials. Java on an
Intel Core I5 2300 CPU @ 2.80 GHz PC is used for the experiments.

4.1 Quadratic assignment problem

The QAP [27] requires the assignment of n facilities to n locations. Equation
1 shows the objective to minimise for the QAP. fπiπj

is the flow between the
facilities πi and πj . π refers to a solution where each element is a facility and the
locus of each facility shows its location. dij is the distance between the location
i and j. The objective is to minimise the total distance weighted by the flow
values.

min
n∑
i

n∑
j

fπiπj
dij (1)

60 QAP instances from QAPLIB [28] were used. 31 instances are selected for
training such that we can have enough performance data for each algorithm
combination within the aforementioned time limit.

Portfolio generation The feature generation process resulted in 217 (31 in-
stances × 7 per instance features) features. The features calculated for each
operator combination on each instance is discarded if the number of moves per-
formed is less than 10. After eliminating such features, 182 (26 instances × 7
per instance features) are left for each operator combination. Next, k-means
was called with k = 5 to detect clusters of operator combinations. The features



with this cluster information was considered as a classification problem in order
to understand the nature of clusters. For this purpose, a random forests based
feature importance evaluation method, i.e. Gini importance [25], is applied. It
revealed that 27 out of 182 features are the ones actually shaping these clusters.
In addition, the features f1 = Nbest/T and f2 = Nimp/T are from these 27
features for most of the QAP instances.

Besides using these 27 features, the same number of features are taken from
the most critical features determined by other feature importance metrics. Table
1 lists the algorithm combination portfolios found using different feature sets
provided by the metrics. The general view of these portfolios suggest that it is
not always a good idea to keep applying all the three types of memetic operators
together. Thus, in certain operator combinations, one or two operator types are
missing. DISTANCE PRESERVING and PARTIALLY MAPPED crossovers are
not included any of the operator combinations of the derived portfolios. Mutation
is either ignored or applied with a small rate, i.e. 0.2 and 0.4. Among the local
search heuristic, FIRST 2 OPT is detected as the most popular local search
method while BEST 2 OPT is never picked. Besides, the portfolio sizes vary
between 3 and 4. Considering that k = 5, 1 or 2 clusters have no operator
combination yielded new best solutions during the training phase. In order to
show whether using multiple operator combinations in an online setting is useful,
the single best combination is also detected. The single best for the QAP uses
CYCLE crossover and FIRST 2 OPT without mutation.

Table 1. Operator combination portfolios determined by OSCAR for the QAP

Feature Selection
Algorithm Portfolios

Crossover Mutation Local Search

No Selection

CYCLE - FIRST 2 OPT
CYCLE - RANDOM 2 OPT
ORDER 0.4 FIRST 2 OPT
CYCLE 0.2 FIRST 2 OPT

Gini Importance
CYCLE - FIRST 2 OPT
CYCLE - RANDOM 2 OPT

- - FIRST 2 OPT

Gain Ratio

CYCLE - FIRST 2 OPT
CYCLE - RANDOM 2 OPT

- - FIRST 2 OPT
CYCLE 0.2 FIRST 2 OPT

Figure 2 visualises the operator combinations for each operator type to de-
termine what actually shapes these clusters via multidimensional scaling (MDS)
[29] with Euclidean distance. These graphs indicate that the operator combina-
tions are grouped particularly in reference to the local search operators. Figure 3
shows the effect of individual performance measures on clustering. The amount



of improvement and worsening w.r.t. the total time spent by each operator com-
bination is utilised as the most critical performance measures. The operator
combinations’ speed, the number of new best solutions and equal quality so-
lutions detected w.r.t. the total time spent by each operator combination are
determined as the measures affecting clusters least.

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

CYCLE

DISTANCE_PRESERVING

ORDER

PARTIALLY_MAPPED

NO CROSSOVER

(a) Crossover

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

mutation rate = 0.0

mutation rate = 0.2

mutation rate = 0.4

mutation rate = 0.6

mutation rate = 0.8

mutation rate = 1.0

(b) Mutation

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

BEST_2_OPT

FIRST_2_OPT

RANDOM_2_OPT

NO LOCAL SEARCH

(c) Local Search

Fig. 2. MDS of operator combinations w.r.t. each operator type for the QAP

Online algorithm selection Figure 4 (a) shows the performance of three port-
folios together with the Single Best combination when Random is used as online
selector, in terms of the success rate (i.e. how many times the best known or
optimum solutions are found, expressed in percentage). The results indicate that
the single best is able to deliver around 23% of the best known QAP solutions
while OSCAR with different portfolios can find between 36% and 37% of the
best known solutions. Although Gini and Gain Ratio based portfolios perform
slightly better than the case without feature selection, there seems to be of only



f1 =Nbest/T

3.7%

f2 =Nimp/T

11.1%

f3 =Nwrs/T

11.1%

f4 =Neql/T
3.7%

f5 =△imp/T

33.3%

f6 =△wrs/T

33.3%

f7 =T/Nmoves

3.7%

Fig. 3. Contribution of the 7 problem-independent performance measures to the
top QAP features, determined by Gini

SingleBest FullSet Gini GainRatio
0

5

10

15

20

25

30

35

40

S
u
cc

e
ss

 R
a
te

(a) Success Rate

SingleBest FullSet Gini GainRatio
1.0

1.5

2.0

2.5

3.0

3.5

4.0
R
a
n
k

(b) Rank

Fig. 4. Success rates and ranks of operator combination portfolios on the QAP

slight difference. However, when we look at the results closely by considering
the solution quality, the performance difference becomes clearer. Figure 4 (b)
presents box plots indicating the ranks of each tested method. Besides the su-
perior performance of OSCAR against the Single Best in ranking, the portfolio
constructed using Gini delivers the best results among the three portfolios.

4.2 Flowshop scheduling problem

The Flowshop Scheduling Problem (FSP) is related to the assignment of n jobs
to m machines aiming at minimizing the completion time of the last job, i,e.
the makespan. The 68 FSP instances from the Taillard FSP benchmarks4 [30]

4 http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/

ordonnancement.html

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html


are used. 41 of these instances are taken as the training instances while the
remaining 27 instances are considered as the test set.

Portfolio generation The feature generation process provided 287 features
(41 instances × 7 per instance features) for each instance. After performing k-
means clustering with k = 5, the Gini importance metric calculated via applying
Random Forests indicated that only 29 of these 287 features contributed to the
clustering process. Thus, we use 29 as the number of top features to check. This
is achieved using the aforementioned importance metrics as we did for the QAP
case. Table 2 lists the portfolios of operator combinations derived using each of
these importance metrics. Unlike the QAP case, DISTANCE PRESERVING and
PARTIALLY MAPPED crossovers are also used in the FSP portfolios. For Mu-
tation, higher rates are preferred, i.e. 0.6 and 0.8, or no mutation is applied. RAN-
DOM 2 OPT, here, is as frequently picked as FIRST 2 OPT and BEST 2 OPT
is used in one operator combination where DISTANCE PRESERVING is in-
cluded. Similar to the QAP portfolios, here each portfolio has either 3 or 4
operator combinations. The single best combination for the FSP applies PAR-
TIALLY MAPPED crossover, mutation with rate of 0.6 and RANDOM 2 OPT.

Table 2. Operator combination portfolios determined by OSCAR for the FSP

Feature Selection
Algorithm Portfolios

Crossover Mutation Local Search

No Selection

CYCLE - FIRST 2 OPT
CYCLE - RANDOM 2 OPT

DISTANCE PRESERVING 0.6 BEST 2 OPT
PARTIALLY MAPPED 0.6 RANDOM 2 OPT

Gini Importance

CYCLE - FIRST 2 OPT
CYCLE - RANDOM 2 OPT

PARTIALLY MAPPED 0.6 RANDOM 2 OPT
ORDER - FIRST 2 OPT

Gain Ratio
PARTIALLY MAPPED 0.6 RANDOM 2 OPT

- 0.8 FIRST 2 OPT
ORDER - FIRST 2 OPT

Figure 5 presents the operator combinations w.r.t. their problem-independent
features in 2D via MDS. As with the QAP, the local search operators mainly
characterise the operator combinations’ groups. Figure 6 shows the which in-
dividual performance measure is used while clustering. Operator combinations’
speed is detected as the major factor. Additionally, the number of new best
solutions, worsening solutions and equal quality solutions w.r.t. the total time
spent by each operator combination are also highly effective on the clusters. The
amount of worsening w.r.t. the total time spent by each operator combination
is utilised as the least important performance measure.



−5 −4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

6

7

CYCLE
DISTANCE_PRESERVING

ORDER
PARTIALLY_MAPPED

NO CROSSOVER

(a) Crossover

−5 −4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

6

7

MUTATION RATE = 0.0
MUTATION RATE = 0.2
MUTATION RATE = 0.4
MUTATION RATE = 0.6
MUTATION RATE = 0.8
MUTATION RATE = 1.0

(b) Mutation

−5 −4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

6

7

BEST_2_OPT

FIRST_2_OPT

RANDOM_2_OPT

NO LOCAL SEARCH

(c) Local Search

Fig. 5. MDS of operator combinations w.r.t. each operator type for the FSP

f1 =Nbest/T

15.6%

f2 =Nimp/T

9.4%

f3 =Nwrs/T

18.8%

f4 =Neql/T

18.8%
f5 =△imp/T

9.4%

f6 =△wrs/T
3.1%

f7 =T/Nmoves

25.0%

Fig. 6. Contribution of the 7 problem-independent performance measures to the
top FSP features, determined by Gini



Online algorithm selection Figure 7 (a) details the performance of 3 port-
folios and the single best combination in terms of success rate (i.e. how many
times the best known or optimal FSP solutions are found, expressed in percent-
age). The portfolios generated using full feature set and Gain Ratio show similar
performance to the single best combination by reaching between 47% and 49%
of the best known or optimum solutions. However, the portfolio with Gini found
around 56% of the best known solutions as the best tested method. Figure 7
(b) presents these results in terms of ranks w.r.t. the solution quality where OS-
CAR’s superior performance can be clearly seen. Among the reported portfolios,
the Gini based portfolio reveals the statistically significant best results.

SingleBest FullSet Gini GainRatio
0

10

20

30

40

50

60

S
u
cc

e
ss

 R
a
te

(a) Success Rate

SingleBest FullSet Gini GainRatio
1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
a
n
k

(b) Rank

Fig. 7. Success rates and ranks of operator combination portfolios on the FSP

Overall, the results on both the QAP and the FSP indicate that using multi-
ple operator combinations is profitable when they are selected online. This shows
that OSCAR is able to combine the strengths of both offline algorithm portfolios
and online algorithm selection in a problem-independent manner. Of particular
significance is that the Gini-based portfolio always perform the best.

5 Conclusions

In this paper, we have introduced OSCAR as a framework that performs Online
SeleCtion of Algorithm poRtfolio. The algorithm portfolio is constructed offline
to determine which combinations of the memetic operators are efficacious for
solving certain problem domains. Those combinations in the portfolio are then
fetched to some online selection mechanism. This hybridization allows an online
selection method to capture the correlation among different types of the memetic
operators. This paper presents the first study of such hybridization. Additionally,
OSCAR does not require any problem-specific features to generate the portfolio,
thereby eliminating the necessity of problem domain expertise.



Empirical assessments on QAP and FSP have demonstrated the efficacy of
OSCAR. OSCAR is able to deliver superior performance compared to the single
best operator combinations for both problems. This shows that the problem-
independent features introduced are practical to differentiate one available oper-
ator combination from the others, which eventually lead to an efficient portfolio.
Furthermore, the improving performance delivered after feature selection, par-
ticularly when Gini importance index is employed, indicates the usefulness of
the feature selection part of OSCAR.

Moving forward, the explanatory landscape analysis [31] will be incorporated
to extend the algorithm feature space. The multi-objective performance measures
shall be studied to build portfolios for multi-objective evolutionary algorithms.
An in-depth analysis will be performed to evaluate the performance of different
clustering techniques and online selection methods.

References

1. Moscato, P., Cotta, C., Mendes, A.: Memetic algorithms. In: New Optimization
Techniques in Engineering. Springer (2004) 53–85

2. Krasnogor, N., Smith, J.: A memetic algorithm with self-adaptive local search:
Tsp as a case study. In: Proceedings of Genetic and Evolutionary Computation
Conference (GECCO’00), Las Vegas/Nevada, USA 987–994

3. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine
Learning 3(2) (1988) 95–99

4. Yuan, Z., Handoko, S.D., Nguyen, D.T., Lau, H.C.: An empirical study of off-
line configuration and on-line adaptation in operator selection. In Pardalos, P.M.,
Resende, M.G.C., Vogiatzis, C., Walteros, J.L., eds.: Proceedings of the 8th Learn-
ing and Intelligent OptimizatioN Conference (LION’14). Volume 8426 of LNCS.,
Gainesville/Florida, USA, Springer (2014) 62–76

5. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-
mization. IEEE Transactions on Evolutionary Computation 4(3) (2000) 284–294

6. Handoko, S.D., Kwoh, C.K., Ong, Y.S.: Feasibility structure modeling: an effective
chaperone for constrained memetic algorithms. Evolutionary Computation, IEEE
Transactions on 14(5) (2010) 740–758

7. Rice, J.: The algorithm selection problem. Advances in computers 15 (1976)
65–118

8. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1 (1997) 67–82

9. Gomes, C., Selman, B.: Algorithm portfolio design: Theory vs. practice. In: Pro-
ceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI’97),
Providence/Rhode Island, USA (August 1–3 1997) 190–197

10. Huberman, B., Lukose, R., Hogg, T.: An economics approach to hard computa-
tional problems. Science 275(5296) (1997) 51

11. Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M., et al.: Adaptive operator
selection with dynamic multi-armed bandits. In: Proceedings of Genetic and Evo-
lutionary Computation Conference (GECCO’08), Atlanta, Georgia, USA (2008)
913–920

12. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research 32(1) (2008)
565–606



13. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Proceedings of the 17th International Confer-
ence on Principles and Practice of Constraint Programming (CP’11). Volume 6876
of LNSC., Springer (2011) 454–469

14. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfo-
lios based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd
international joint conference on Artifical Intelligence (IJCAI’13). (2013) 608–614

15. Stern, D., Herbrich, R., Graepel, T., Samulowitz, H., Pulina, L., Tacchella, A.: Col-
laborative expert portfolio management. In: Proceedings of the 24th AAAI Con-
ference on Artificial Intelligence (AAAI’10), Atlanta/Georgia, USA (2010) 179–184

16. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms
for portfolio-based selection. In: Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI’10). (2010) 210–216

17. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic al-
gorithm configuration framework. Journal of Artificial Intelligence Research 36(1)
(2009) 267–306

18. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: Satenstein: Automat-
ically building local search sat solvers from components. In: Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI’09). Volume 9.
(2009) 517–524

19. Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.:
Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society 64 (2013) 1695–1724

20. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science. (2008)

21. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Com-
putation (GECCO’05), ACM (2005) 1539–1546

22. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learn-
ing. In: Metaheuristics: Computer Decision-Making, Kluwer Academic Publishers
(2003) 523–544

23. Mısır, M.: Intelligent Hyper-heuristics: A Tool for Solving Generic Optimisation
Problems. PhD thesis, Department of Computer Science, KU Leuven (2012)

24. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The
Journal of Machine Learning Research 3 (2003) 1157–1182

25. Breiman, L.: Random forests. Machine learning 45(1) (2001) 5–32
26. Quinlan, J.R.: C4. 5: programs for machine learning. Volume 1. Morgan kaufmann

(1993)
27. Lawler, E.: The quadratic assignment problem. Management Science 9(4) (1963)

586–599
28. Burkard, R.E., Karisch, S.E., Rendl, F.: Qaplib–a quadratic assignment problem

library. Journal of Global Optimization 10(4) (1997) 391–403
29. Borg, I., Groenen, P.J.: Modern multidimensional scaling: Theory and applications.

Springer (2005)
30. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of

Operational Research 64(2) (1993) 278–285
31. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:

Exploratory landscape analysis. In: Proceedings of the 13th annual conference on
Genetic and evolutionary computation, ACM (2011) 829–836


	OSCAR: Online Selection of Algorithm Portfolios with Case Study on Memetic Algorithms
	Mustafa Mısır, Stephanus Daniel Handoko, Hoong Chuin Lau 

