
Security personnel routing and rostering: a hyper-

heuristic approach

Mustafa Misir
1,2

, Pieter Smet
1
, Katja Verbeeck

1,2
 and Greet Vanden Berghe

1,2

1 KAHO Sint-Lieven, CODeS, Gebroeders De Smetstraat 1, 9000 Gent, Belgium
2 Katholieke Universiteit Leuven Campus Kortrijk, Computer Science and Information

Technology, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium

{Mustafa.Misir, Pieter.Smet, Katja.Verbeeck, Greet.Vandenberghe}@kahosl.be

Abstract. In the present study, a large scale, structured problem regarding the

routing and rostering of security personnel is investigated. Structured problems

are combinatorial optimization problems that encompass characteristics of more

than one known problem in operational research. The problem deals with

assigning the available personnel to visits associated with a set of customers.

This objective just described, reflects the rostering characteristic of the

problem. In addition, the different geographic locations of the customers

indicate the requirement of routing. A new benchmark dataset for this complex

problem is presented. A group of high-level problem-independent methods, i.e.

hyper-heuristics, is used to solve this novel problem. The performance and

behaviour of different hyper-heuristics for the presented benchmark dataset are

analysed.

Keywords: vehicle routing, personnel rostering, hyper-heuristic

1. Introduction

Security personnel routing and rostering deals with the complex problem of assigning

security tasks at different locations to the members of staff. Task duration and staff

requirements vary and so do the skills and contracts of the personnel.

The problem presented can be considered a combination of two well-known, hard

problems: the vehicle routing problem with time windows (VRPTW) (Cordeau et al.

2001) and the personnel rostering problem (Burke et al. 2004). More specifically, full

attention is given to the multi-depot variant of the VRPTW (MDVRPTW) allowing

the model to come closer to the real-world situation. The MDVRPTW has received

limited attention in the literature. Cordeau et al. 2001 present results for a tabu search

algorithm and introduce new benchmark instances for the MDVRPTW. Polacek et al.

describe the application of a variable neighbourhood search algorithm and report an

improvement for 10 of the 20 Cordeau benchmark instances. Ostertag et al. 2009 use

a memetic algorithm to solve a large real world MDVRPTW, with up to 1848

customers to be serviced.

In contrast to the MDVRPTW, personnel rostering has received ample attention

over the last decades. Burke et al. 2003 present the application of a tabu search hyper-

heuristic to a nurse rostering problem. The hyper-heuristic produces schedules of

similar quality as those produced by a (tailor-made) genetic algorithm. The authors

illustrate the high level of generality that a hyper-heuristic provides by applying it to

another scheduling problem. Bilgin et al. 2009 present a hyper-heuristic approach to a

nurse rostering problem in Belgian hospitals. For 16 out of 18 problem instances their

hyper-heuristics perform significantly better than a variable neighbourhood search

algorithm, for the two remaining instances their performance is similar.

The home care scheduling problem (HCSP) exhibits similar characteristics as the

problem investigated here. The difference lies in the limited complexity of the

personnel rostering aspects in the HCSP. For example, typically, the scheduling

horizon is set to one (Bertels and Fahle 2006) (or five (Begur et al. 1997)) days.

In the literature, hyper-heuristics have been investigated under two main types:

selection hyper-heuristics and generation hyper-heuristics (Burke et al. 2010).

Selection hyper-heuristics are composed of different components to manage a set of

search mechanisms. Choice function (Cowling et al. 2001), reinforcement learning

(Nareyek 2003, Ozcan et al. 2010), case-based reasoning (Burke et al. 2002),

simulated annealing (Bai et al. 2005, Burke et al. 2010) and genetic algorithms (Han

and Kendall 2003) are some example techniques that have been employed to build

effective selection hyper-heuristics. For generation hyper-heuristics, the idea is to

automatically generate low-level search strategies. Here, genetic programming (Burke

et al. 2006) is the preferred approach. More details about hyper-heuristics are

available in Burke et al. 2010, Burke et al. 2009.

In the present study, the problem of routing and rostering security personnel is

studied. Various selection hyper-heuristics are applied to a set of real-world problem

instances. In the next section, the details of the problem are explained. In Section 3,

the details of the solution strategy with applied hyper-heuristics are presented.

Experimental results are analysed in Section 4. In the last section, concluding remarks

and future ideas are discussed.

2. Problem Description

Let G = (V, A) be a complete graph with vertices V = {v1, …,vd, vd+1, …,vn} and arcs A

= {(vi, vj) : vi, vj in V, i ≠ j}. The nodes D = {v1,…,vd} represent the depots, and nodes

N = V \ D represent the jobs that need to be performed by the security personnel.

These jobs will be referred to as visits.

With each depot vj in D, a number of personnel kj is associated, who start and end

their tours in the depot vj. Let Pj = {p1,…,pk} be the set of security guards at each

depot. In the problem presented, depots are associated with homes of security guards

and each employee leaves for the first visit on his or her route straight from his or her

home. Typically, kj = 1 for every vj in D, which means that there is only one

employee at each depot. However, other situations are possible, when e.g. two

colleagues live at the same place.

With each security guard pi in Pj, a set of skills Si = {s1,…,sm} is associated.

Furthermore, a list of regions is specified in which a security guard is allowed to

perform visits. If a security guard is assigned to a visit that is located outside the

 3

guard’s allowed regions, a penalty will be incurred. Finally, a contract describing a set

of workforce related constraints is specified for each security guard. Table 1 shows an

overview of these constraints.

Table 1. Workforce related constraints.

Maximum number of consecutive working days 6

Maximum consecutive working time per day (minutes) 720

Maximum working time per week (hours) 37

Maximum working time per month (hours) 175 or 190

Minimum rest time between two working days (hours) 5

Maximum number of consecutive working weekends 2

Preferred number of days worked per week 5

All security guards are assumed available 24 hours per day. By defining the

constraint that limits the maximum working time per day, they can only be assigned

for 720 minutes in that period. Every security guard should return to his or her depot

before this predetermined time limit is reached. Note that the working time per day is

continuous. Apart from the legal workforce related constraints, which are identical for

every employee, the available security personnel can be heterogeneous in any of the

above described characteristics.

Every visit vi in N can have an earliest and latest start date [ei, li], with li ≥ ei, as

well as a time window for each day, defined by a start and end time [t
s
i, t

e
i].

Furthermore, a duration di is defined, so that t
e
i ≥ t

s
i + di. Note that the earliest and

latest start dates lie anywhere between the start and the end of the scheduling period.

Lastly, a set of required skills, Ri = {s1,…,sm}, is specified.

The benchmark problems used in this paper are based on real world data by the

company Fascinating IT Solutions (www.fit.be). The data describe the characteristics

of the security personnel and details about as to when visits have been executed. This

means that every visit in the provided data has a tight time window, i.e. li = ei and t
e
i

= t
s
i + di . In order to diversify the available benchmark problems, a second set of

instances was created. In this second set, the parameters relating to the time windows,

[ei, li] and [t
s
i, t

e
i], are adjusted in such a way that for some visits the time window is

no longer tight. This is done by relaxing the time window with a value ri = α . di , with

α having a uniformly distributed chance of being either 0.5 or 1. Half of the resulting

value ri is then added to t
s
i, and the other half to t

e
i. New values for ei and li are

determined by adding a randomly chosen number of days from a uniform distribution

between 0 and 4 to the original values of ei and li. If, by extending ei (or li) the bounds

of the scheduling period are exceeded, the earliest (or latest) start date is removed for

that visit.

For every benchmark problem, the length of the scheduling period is set to 31

days; the number of skills is 16 and the number of regions is 10. An overview of

specific properties is given in Table 2. To give other researchers the opportunity to

investigate new solution approaches for this problem, the benchmark instances have

been made publicly available at http://allserv.kahosl.be/~pieter/securityguards.html.

The goal is to construct a set of routes in which every security guard starts from his

or her depot and returns to the same depot. All visits in N need to be assigned to a

security guard, and the start time of service has to be determined. The constructed

schedule should minimize the number of required employees as well as the required

travel and waiting time for each employee. Furthermore, several requirements of both

security personnel and customers are considered: violation of a visits’ time window,

violation of required skills, allowed regions and of the legal workforce related

constraints. A weighted objective function is used to evaluate a candidate solution, in

which the incurred penalties scale linearly with the amount of violation.

Table 2. Properties of the benchmark problems.

Name Nr. of guards Nr. of visits

district0 62 1560

district1 348 4217

district2 120 1714

district3 113 2193

district4 192 5252

district5 389 5139

3. Selection Hyper-heuristics

A traditional selection hyper-heuristic operates on a set of low-level heuristics for

indirectly solving a problem instance. A low-level search heuristic can be any method

that is capable of finding a solution or constructing a part of a solution for a problem

instance. A selection hyper-heuristic chooses a heuristic and applies it to a solution.

This selection procedure is carried out by a heuristic selection mechanism. After

applying the selected heuristic, the constructed solution is examined based on its

problem-independent characteristics, e.g. its quality, by a move acceptance

mechanism. These consecutive operations are repeated at each decision step and

terminated until a given stop criterion is reached.

A single-point search perturbative selection hyper-heuristic framework is used in

this paper. This framework operates on a single complete solution and executes

perturbations on this solution. The employed hyper-heuristic components are

discussed in the following subsections.

3.1 Heuristic selection

In the present study, the selection operation is performed by two heuristic selection

mechanisms, namely simple random (SR) heuristic selection and adaptive dynamic

heuristic set (ADHS). SR is a naive but effective method that randomly chooses

heuristics. ADHS behaves in a more selective way. The aim of ADHS is to determine

the best heuristic subset for the current search region. In Algorithm 1, the details of

ADHS are presented. In the given pseudo-code, a phase refers to a number of

iterations for measuring the performance of the heuristics. Tabu is a status type for

heuristics that are excluded for a number of phases (d). This value is calculated as

 5

nd 2 , whereby n refers to the number of heuristics. Whenever a heuristic is not

tabu anymore, its status is changed to non-tabu and added back to the heuristic set.

Algorithm 1: ADHS

1. Check performance (pi) of the heuristics during a phase

2. Assign a score (QIi in {1,2.,…,n}) to each heuristic (LLHi) based on its performance, with

respect to the pre-determined performance metric

3. Exclude the heuristics having smaller scores than the average (avg) of all scores

















  nQIavg

n

i

i /

4. Change the status of the excluded heuristics to tabu

5. Change the status of the heuristics whose exclusion finishes to non-tabu

Equation (1) shows the performance metric used to determine QI values. Each

element which is multiplied by a weight (wi) refers to a performance related feature.

The first performance feature is used to measure the capability of finding new best

solutions. For the calculation, the number of new best solutions (Cp,best(i)) discovered

during a phase (p) by heuristic i is used together with the speed of the heuristic.

Cp,equal(i) and Cp,moves(i) are the counters showing the number of equal quality

solutions generated and the number of moves performed by heuristic i during a phase.

The outcome of this feature shows a value related to the number of new best solutions

that can be found by the heuristic until the search is terminated. The second and third

performance features show the fitness improvement (fp,imp(i)) and fitness worsening

(fp,wrs(i)) per spent execution time (tp,spent(i)) by heuristic i during a phase. The last two

sub-performance metrics refer to the overall improvement (fimp(i)) and worsening

(fwrs(i)) yielded by heuristic i per spent execution time (tspent(i)) until that time. tremain

indicates the remaining execution time. In addition, the weights for the performance

features are set as w1 >> w2 >> w3 >> w4 >> w5. This allows the different features to

be used according to their importance. In particular, if a heuristic discovers a new best

solution, then there is no need to check other features to determine its QI value.

ip         bittiCiCiCw spentpremainmovepequalpbestp ,

2

,,,1 /))(/)(((1)

           itifwitifw spentpwrspspentpimpp ,,3,,2 //

          itifwitifw spentwrsspentimp // 54 

 






















otherwise

iCif
b

n

i

bestp

,0

0,1
0

,

Tabu duration adaptation: The number of phases denoting the amount of time that a

heuristic will be excluded (i.e. the time a heuristic is tabu), is determined in advance

as mentioned above. Whenever the punishment of the excluded heuristic expires, it

re-joins the active heuristic set. However, it is obvious that when an unsatisfactory

heuristic repeatedly re-joins the active set, the effectiveness of the hyper-heuristic can

decrease. Therefore, instead of fixing the tabu duration for each heuristic, this value is

updated when necessary. The adaptation method increments the tabu duration of a

heuristic if it is excluded again after the phase in which it re-joined the heuristic set. It

is incremented until the corresponding value reaches 2dinitial. If this heuristic is not

prohibited after a phase, then its tabu duration is set to dinitial again.

Phase length adaptation: The phase length (phlength) is calculated using a predefined

value, i.e. phfactor, as ndd 2,phfactor  . In this formula, n refers to the number of

heuristics in the current heuristic set. That is, the size of the heuristic set affects

phlength. The other adaptation element is associated with the speed of the non-tabu

heuristics. At the end of each phase, the speed of performing one move based on the

average speed of the non-tabu heuristic is used to determine the phlength. If the current

heuristic set is slow, then phlength is assigned a smaller value.

Learning automata based selection: For efficiently using an elite heuristic subset,

the performance of the heuristics with respect to their improvement capabilities

during each phase is taken into account. For this purpose, heuristics are selected based

on their performance related probabilities maintained by learning automata [20]. In

particular, a linear reward-penalty update scheme is used. The corresponding

probability vector is reset at the beginning of each phase.

3.2 Move acceptance

For the experiments, five move acceptance mechanisms are used: adaptive iteration

limited list-based threshold accepting (AILLA), improving or equal (IE), simulated

annealing (SA), great deluge (GD), late acceptance (LATE). The implementations of

SA and GD are from [19]. The pseudo-code of LATE and AILLA are given in Fig. 1

and Fig. 2 respectively.

Input – L: list length (l=10)

Variables – I: number of iterations, v: selected index from the list

Initialize – Set all the list elements to the initial fitness

1. v = I%L;

2. if f(S’) ≤ f(Sv) then

3. S ← S’;

4. f(Sv) = f(S);

5. end
6. I = I+1; //increase the number of iterations by 1

Fig. 1. Pseudo-code of the late acceptance.

Input – k: initial iteration limit (k=150), l: list length (l=10), K: iteration limit for adaptation

 (K=5k=750)

 7

Variables – i: threshold index for the list, w_iterations: the number of consecutive

 worsening moves, adapt_iterations: the number of iterations before increasing

 the threshold level

Initialize – Fill the best fitness list with the initial fitness

1. if adapt_iterations ≥ K then

2. if i < l-1 then

3. i++; //increase the threshold value

4. end

5. end

6. if f(S) < f(S’) then

7. S ← S’;

8. w_iterations = 0;

9. if f(S’) < f(Sb) then

10. i = 1;

11. Sb ← S’;

12. w_iterations = adapt_iterations = 0;

13. bestlist.remove(last); //remove the last element in the list

14. bestlist.add(0,f(Sb)); //add new best solution to the beginning of the list

15. end

16. else if f(S’) = f(S) then

17. S ← S’;

18. else

19. w_iterations++;

20. adapt_iterations++;

21. if w_iterations ≥ k and f(S’) ≤ bestlist(i) then

22. S ← S’;

23. w_iterations = 0;

24. end

25. end

Fig. 2. Pseudo-code of the adaptive iteration limited list-based threshold accepting.

Each of the used move acceptance mechanisms accepts solutions of better or equal

quality. For diversifying the search process, SA accepts worsening solutions based on

a probability calculated as shown in equation (2). GD accepts worsening solutions

using a threshold value determined based on the quality of the initial solution (finitial)

as well as a linearly decreasing ratio for the remaining execution time (tremain) over the

total execution time (ttotal) as illustrated in equation (3). LATE maintains the history of

previously visited solutions for deciding about new solutions. Similarly, AILLA also

maintains a history. However, it waits for a number of iterations denoting

consecutively visited solutions (k) before diversifying the search. To indicate the

hardness of finding new best solutions, k is updated whenever a new best solution is

found. The simple update process is depicted in equation (4).

    remaintotalnewcurrent ttff /exp  (2)

 totalremaininitial ttf /

(3)

    

































otherwiseltttkkl

kitercwifliterkl

k cw

i

totalelapsedtotal

i

elapsedelapsed

,//)(8.0)1(

0/,/1

0

(4)

4. A Two-phase Approach

A two-phase strategy involving the application of hyper-heuristics was designed to

solve the routing and rostering problem. In the first phase, the best order of visits and

assignments of these visits to the available personnel are searched for. The start time

of each visit is determined by its earliest possible starting time as well as by the

availability of the corresponding personnel. If no change occurs in the rest of the

route, the start time remains unchanged during this first phase. The search is

performed on a smaller space compared with the search space of the original problem.

In the first phase, the hyper-heuristic operates on a set of simple low-level

heuristics (LLHs). The idea behind utilising such simple heuristics is to show that

good quality solutions can be reached by simple operations instead of complex, highly

problem-dependent moves. These heuristics are the following:

 LLH0: swap two randomly selected visits between two randomly selected routes

 LLH1: move the most conflicting visit in a randomly selected route to the best

position in another randomly selected route.

 LLH2: move a randomly selected visit from a randomly selected route to another

randomly selected route. The best location to move the visit to is determined based

on the quality of the route.

 LLH3: move a randomly selected visit from a randomly selected route to another

randomly selected route

 LLH4: swap two randomly selected visits in a randomly selected route

 LLH5: reverse a number randomly selected consecutive visits in a randomly

selected route

 LLH6: move a randomly selected visit in a randomly selected route

 LLH7: scramble randomly selected consecutive visits in a randomly selected route

 LLH8: exchange two randomly selected consecutive visits belonging to two

randomly selected routes

 LLH9: move a number of randomly selected consecutive visits from a randomly

selected route to another randomly selected route

The second phase is dedicated to improving the solution by performing simple

changes on visiting times. A time shifting parameterised heuristic is employed with

four different parameter settings. They consist of sliding a visit +10 minutes, -10

minutes, +20 minutes and -20 minutes. In the experiments, this phase is handled by an

SR-IE hyper-heuristic.

 9

5. Experiments

Each hyper-heuristic was tested on 12 problem instances using a Pentium Core 2 Duo

3 Ghz with 3 GB memory. Each test was repeated 10 times per instance. The

execution time was limited to 10 minutes per run. As described in Section 2, some of

the time windows are relaxed in instances district0 to district5. In addition, the

experiments were also performed on the same instances with tight time windows

(instances district0-etw to district5-etw).

Table 3 shows the results of the hyper-heuristics with SR as selection mechanism.

Results based on the best solutions at each run indicate that SR-AILLA, SR-SA and

SR-IE show similar performance. SR-LATE performs better than SR-GD. However,

they both perform significantly worse than the first three hyper-heuristics (based on

the Wilcoxon signed-rank test with 95% confidence level.)

Table 3. The average fitness values with standard deviation for hyper-heuristics with SR.

Instances
SR-AILLA SR-SA SR-IE

AVG STD AVG STD AVG STD

district0 3,44E+08 2,66E+07 3,16E+08 1,88E+07 3,39E+08 4,73E+07

district1 2,84E+05 1,63E+04 2,82E+05 1,31E+04 2,87E+05 1,71E+04

district2 1,16E+05 2,13E+05 1,72E+05 3,71E+05 5,31E+04 4,76E+04

district3 8,70E+04 2,23E+04 1,16E+05 1,10E+05 8,76E+04 2,39E+04

district4 1,17E+08 2,19E+07 1,14E+08 2,33E+07 1,27E+08 2,43E+07

district5 4,26E+05 7,62E+04 1,05E+07 3,16E+07 4,49E+05 1,24E+05

district0-etw 1,54E+08 5,63E+07 1,41E+08 2,78E+07 1,45E+08 3,75E+07

district1-etw 1,05E+05 1,10E+04 1,31E+05 8,53E+04 1,02E+05 6,07E+03

district2-etw 6,85E+04 5,92E+04 1,31E+05 1,88E+05 6,33E+04 4,38E+04

district3-etw 1,55E+05 2,13E+05 6,55E+04 6,57E+04 8,18E+04 6,71E+04

district4-etw 6,20E+07 9,19E+06 6,31E+07 1,06E+07 6,09E+07 1,01E+07

district5-etw 4,78E+05 4,82E+05 3,88E+05 1,11E+05 3,54E+05 1,33E+05

SR-LATE SR-GD

AVG STD AVG STD

district0 8,06E+08 5,79E+07 1,65E+09 9,57E+07

district1 2,89E+05 1,33E+04 3,38E+08 1,83E+08

district2 4,55E+05 1,11E+06 5,07E+08 1,43E+08

district3 3,24E+05 7,33E+05 3,99E+07 7,00E+06

district4 6,92E+08 1,12E+08 1,00E+09 1,52E+08

district5 2,37E+08 2,36E+08 3,52E+09 5,51E+08

district0-etw 4,47E+08 6,12E+07 1,15E+09 1,71E+08

district1-etw 1,28E+05 4,05E+04 2,01E+08 1,36E+08

district2-etw 1,15E+05 1,20E+05 4,22E+08 9,50E+07

district3-etw 1,61E+05 4,01E+05 4,07E+07 2,84E+07

district4-etw 2,70E+08 6,51E+07 5,70E+08 9,23E+07

district5-etw 1,01E+08 9,45E+07 2,07E+09 4,24E+08

3.1 Adaptive dynamic heuristic set strategy

Table 4 presents the performance of the set of significantly better hyper-heuristics

from Table 3 with the ADHS selection mechanism instead of SR. These results

indicate that ADHS provides further improvements over SR.

Table 4. The average fitness values with standard deviation for the top hyper-heuristics from

Table 3 with ADHS.

Instances
ADHS-AILLA ADHS-SA ADHS-IE

AVG STD AVG STD AVG STD

district0 3,39E+08 2,66E+07 3,18E+08 1,81E+07 3,12E+08 1,27E+07

district1 2,79E+05 6,37E+03 2,82E+05 1,26E+04 2,83E+05 1,21E+04

district2 5,87E+04 6,15E+04 3,83E+04 2,85E+04 7,56E+04 1,44E+05

district3 8,62E+04 2,72E+04 8,87E+04 1,67E+04 1,03E+05 4,36E+04

district4 6,02E+07 1,45E+07 5,75E+07 1,09E+07 5,73E+07 1,39E+07

district5 4,10E+05 7,44E+04 5,09E+05 1,96E+05 4,99E+05 1,35E+05

district0-etw 1,39E+08 1,61E+07 1,24E+08 1,38E+07 1,21E+08 9,22E+06

district1-etw 1,02E+05 7,86E+03 1,28E+05 7,36E+04 1,22E+05 3,45E+04

district2-etw 2,61E+04 1,83E+04 4,43E+05 1,24E+06 2,59E+04 1,14E+04

district3-etw 4,28E+04 2,64E+04 4,22E+04 2,61E+04 7,34E+04 7,40E+04

district4-etw 3,34E+07 7,81E+06 3,34E+07 7,55E+06 3,51E+07 1,00E+07

district5-etw 3,70E+05 8,00E+04 4,75E+05 2,48E+05 3,42E+05 4,98E+04

Fig. 3. The number of moves performed by each heuristic during the run by ADHS-AILLA on

(a) district2-etw run 3, (b) district4-etw run 5.

Fig. 3 shows the number of moves performed by the existing heuristics under

ADHS-AILLA for two instances. ADHS behaves differently during the run by

selecting certain heuristics more often and excluding others relying on the

 11

performance changes. In addition, its behaviour is different on different instances. In

conclusion, high-level search approaches utilising a group of low-level algorithms

require online learning for better judgement of the changing characteristics of the

search space.

In general, the quality of the solutions for instances with extended time windows is

better than for instances with tight time windows. This is a useful result to show the

effectiveness of softening time windows, in accordance with Taillard et al. 1997.

6. Conclusion

The presented routing and rostering problem contains the characteristics of two

combinatorial optimization problems. In the literature, it is common to encounter

problems with only a routing aspect, e.g. the vehicle routing problem, or a personnel

rostering aspect, e.g. the nurse rostering problem. In this paper, a problem was

modeled that combines both routing and rostering characteristics concerning the

assignment of jobs to a security crew. A suite of generic approaches, i.e. hyper-

heuristics, was introduced for addressing a set of varying instances. A detailed

performance analysis was conducted based on experiments with real-world data. The

results show that the generic hyper-heuristics can generate satisfactory results, i.e.

schedules which could be used in practice.

In the future, the problem will be extended by increasing the number of visit types,

adding resource availabilities and providing multiple contract options. For the hyper-

heuristics, a feedback mechanism will be built allowing communication between

hyper-heuristic components.

Acknowledgement This research was conducted in the context of a project funded by

IWT (Flemish Institute for Science and Technology).

References

1. Burke, E. K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The State of

the Art of Nurse Rostering. J. Sched. 7(6), 441--449 (2004)

2. Cordeau, J.-F., Laporte, G., Mercier, A.: A Unified Tabu Search Heuristic for Vehicle

Routing Problems with Time Windows. JORS 52, 928--936 (2001)

3. Polacek, M., Hartl, R. F., Doerner, K., Reimann, M.: A Variable Neighborhood Search for

the Multi Depot Vehicle Routing Problem with Time Windows. J. Heur. 10(6), 613--627

(2004)

4. Ostertag, A., Doerner, K. F., Hartl, R. F., Taillard, E. D., Waelti, P.: POPMUSIC for a real-

world large-scale vehicle routing problem with time windows. JORS 60, 934--943 (2009)

5. Burke, E.K., Kendall, G., Soubeiga, E., A Tabu-Search Hyperheuristic for Timetabling and

 Rostering. J. Heur. 6(9), 451--470 (2003)

6. Bilgin, B., De Causmaecker, P., Vanden Berghe, G.: A Hyperheuristic Approach to Belgian

Nurse Rostering Problems. In: 4th Multidisciplinary International Scheduling Conference:

Theory and Applications, pp. 683--689 (2009)

7. Bertels, S., Fahle, T.: A hybrid setup for a hybrid scenario: combining heuristics for the

home care problem. Comp. and Oper. Res. 33(10), 2866--2890 (2006)

8. Begur, S.V., Miller, D.M., Weaver, J.R., An integrated spatial DSS for scheduling and

routing home-health care nurses. Interfaces 27(4), 35--48 (1997)

9. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: A

classification of hyper-heuristic approaches. Handbook of Metaheuristics, 449--468 (2010)

10. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales

summit. In: 3rd International Conference on Practice and Theory of Automated

Timetabling, pp. 176--190 (2001)

11. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In:

Metaheuristics: Computer Decision-Making, 523--544 (2003)

12. Ozcan, E., Misir, M., Ochoa, G., Burke E.K.: A Reinforcement Learning - Great-Deluge

Hyper-Heuristic for Examination Timetabling. IJAMC 1(1): 39--59 (2010)

13. Bai, B., Kendall, G., An Investigation of Automated Planograms Using a Simulated

Annealing Based Hyper-heuristics. Meta-heuristics: Progress as Real Problem Solvers,

Selected Papers from the 5th Metaheuristics International Conference, 87--108 (2005)

14. Burke, E.K., Kendall, G., Misir, M., Ozcan, E.: Monte Carlo hyper-heuristics for

examination timetabling. Ann. Oper. Res., 1--18 (2010)

15. Han, L., Kendall, G.: An Investigation of a Tabu Assisted Hyper-Heuristic Genetic

Algorithm. In: the IEEE Congress on Evolutionary Computation, 3, pp. 2230--2237 (2003)

16. Burke, E.K., MacCarthy, B., Petrovic, S., Qu, R.: Knowledge Discovery in a Hyperheuristic

Using Case-Based Reasoning on Course Timetabling. In: the 4th International Conference

on the Practice and Theory of Automated Timetabling, pp. 276--286 (2002)

17. Burke, E.K., Hyde, M.R., Kendall, G., Evolving Bin Packing Heuristics with Genetic

Programming. In: 9th Parallel Problem Solving from Nature, LNCS 4193, 860--869 (2006)

18. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R., A Survey of Hyper

heuristics. CS Tech. Rep. University of Nottingham (2009)

19. Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, V., Vanden Berghe, G., One hyper-

heuristic approach to two timetabling problems in health care. Technical Report KAHO

Sint-Lieven (2010)

20. Misir, M., Wauters, T., Verbeeck, K., Vanden Berghe, G., A new learning hyper-heuristic

for the traveling tournament problem. In: 8th Metaheuristic International Conference (2009)

21. Taillard, E., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y, A tabu search heuristic for

the vehicle routing problem with soft time windows. Trans. Sci. 31, 170–186 (1997)

