
MISTA 2011

A new hyper-heuristic implementation in HyFlex:

a study on generality

Mustafa Mısır · Katja Verbeeck · Patrick De

Causmaecker · Greet Vanden Berghe

Abstract Reusability is a desired feature for search and optimisation strategies. Low-

level, problem-dependent search mechanisms are far from being used on different prob-

lems while keeping them unchanged. Meta-heuristics have been employed for taking

the heuristic design process to a higher level and for facilitating reusability. These

approaches have been usually conceived as heuristic methods that need to be imple-

mented and adapted with regard to the characteristics of the goal problem. Thus,

the resulting algorithms are still problem-dependent and hard to apply to other prob-

lems. Hyper-heuristics take the search process into the heuristic level and manage the

heuristic set instead of directly solving a problem. During this management process,

any problem-dependent data exchange between hyper-heuristics and problems is disal-

lowed. Although any knowledge about the problems is absent for the hyper-heuristics,

the generality of hyper-heuristics has not been examined extensively. In a recently pro-

posed high level framework, HyFlex, it is easy to test the generality of hyper-heuristics.

HyFlex provides a set of problems with a number of instances as well as a group of

low-level heuristics. In this study, the design process of a hyper-heuristic upon HyFlex

will be discussed. A performance analysis based on the experimental results will be

carried out.

1 Introduction

New problem domains or variants of existing problems have been progressively entering

the literature. They draw the attention of researchers to develop effective solution

strategies. The performance of the developed algorithms tends to vary over different

problems or even over problem instances belonging to a particular problem. In order to

alleviate this issue, algorithm selection strategies have been studied. The primary goal

Mustafa Mısır · Katja Verbeeck · Greet Vanden Berghe
KAHO Sint-Lieven, CODeS, Gebroeders Desmetstraat 1, 9000 Gent, Belgium
K.U.Leuven Campus Kortrijk, CODeS, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
E-mail: {mustafa.misir,katja.verbeeck,greet.vandenberghe}@kahosl.be

Patrick De Causmaecker
K.U.Leuven Campus Kortrijk, CODeS, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
E-mail: patrick.decausmaecker@kuleuven-kortrijk.be

of these strategies is to determine the best algorithm for the target problem instances.

Even if this is a useful approach, it misses the possible improvement opportunities

due to varying algorithm performance in the course of the solution process. Selection

hyper-heuristics follow a deeper selection approach by managing a number of given

low-level search strategies during the search relying on their strength and weaknesses

[7].

In the literature, the number of studies concerning hyper-heuristics is exponentially

growing. In [8], these hyper-heuristics were classified based on the type of the provided

feedback mechanisms and the nature of the heuristic search space. Based on their feed-

back mechanisms, three categories are considered, namely hyper-heuristics with online

learning, offline learning and no learning. In online learning, the learning process occurs

during the search process. Choice function [16], reinforcement learning [29,31], learning

automata [28] are some examples of online learning. Contrarily, offline learning refers

to learning before starting the search. In particular, case based reasoning [14] and

learning classifier systems [32,26] work in an offline manner. It is also available some

hyper-heuristic components without any learning device. An example is the simple ran-

dom heuristic selection mechanism [16]. Hyper-heuristics are categorised with respect

to the nature of the given heuristics as selection hyper-heuristics and generation hyper-

heuristics. The aforementioned studies handled the selection hyper-heuristics that per-

form over constructive or perturbative heuristics. This type of hyper-heuristics also

contain various meta-heuristic components such as tabu search [13], simulated anneal-

ing [18,11], genetic algorithms [20] and ant colony optimisation [12]. On the other hand,

there exist some hyper-heuristics that aim to generate the low-level heuristics. In [10,

9,19,2,5], genetic programming was utilised to generate low-level heuristics designed

for the problem instances.

According to the initial definition of hyper-heuristics, they have been designed to

raise the level of generality [7]. Placing a domain barrier preventing any problem-

dependent data transition from or to hyper-heuristics is the foremost rule for reaching

generality. This basic principle leads hyper-heuristics to focus on managing low-level

search strategies instead of directly solving a problem instance. Therefore, it is required

to design a hyper-heuristic that has the ability to govern different heuristic sets while

profiting maximally from their capabilities. HyFlex is a software framework that em-

powers hyper-heuristic developers to test their approaches across a range of problems

[6]. In the current version, four problem domains, i.e. max SAT, bin packing, per-

mutation flowshop and personnel scheduling, are available. Related to each problem

domain, a number of perturbative heuristics that have been implemented from four

main heuristic types, namely mutational heuristics, crossover operators, ruin-recreate

heuristics and hill climbers. The detailed description of these problems, the character-

istics and origins of instances as well as the definition of the heuristics were given in

[17,22,21,35]. In addition to these features, HyFlex provides an opportunity to change

the effect of mutational heuristics and hill climbers. Moreover, it is possible to keep

some of the solutions in memory for further use.

In the present study, a selection hyper-heuristic is implemented on HyFlex and

an experimental performance analysis on the available problems is conducted. The

proposed hyper-heuristic has been developed as a general adaptive strategy for the

four problem domains and the given heuristic sets. It consists of a dynamic heuristic

selection mechanism and a move acceptance strategy based on the changing charac-

teristics of the search environment. Experimental results confirm that the developed

Heuristic Type Max SAT Bin Packing Perm. Flowshop Personnel Scheduling
Mutation 2 (3,4) 2 (0,5) 5 (0,1,2,3,4) 1 (11)
Crossover 2 (7,8) 1 (6) 5 (11,12,13,14,15) 3 (8,9,10)

Ruin-recreate 1 (6) 2 (1,2) 2 (5,6) 3 (5,6,7)
HillClimber 4 (0,1,2,5) 2 (3,4) 4 (7,8,9,10) 5 (0,1,2,3,4)

Total 9 7 16 12

Table 1 The distribution of heuristic types for the given problem domains (heuristic indexes
are shown in parentheses)

hyper-heuristic can provide significant performance improvement compared to other

hyper-heuristics tested on the problem instances.

In the remainder of this paper, the generality requirements for hyper-heuristics are

succinctly discussed in Section 2. The underlying components of the proposed hyper-

heuristic is presented in Section 3. Next, the experimental results are discussed in

Section 4. In the last section, the paper is concluded.

2 Generality requirements

A generic selection hyper-heuristic should be capable of managing a diverse range of

heuristic sets utilised for solving distinct problems. Although the capability of solving

as many problems as possible is the primarily mentioned focus, the main concern should

be the management of different heuristic sets. This objective implicity embraces the

aim of solving various problems anyway. The characteristics of the existing low-level

heuristics may require distinct management strategies because each heuristic may have

various advantages and disadvantages. These features should be interpreted relying

on the dynamic performance of the heuristics and experimental limits such as the

given execution time. And the heuristic set as a whole should be used in synergy.

For this purpose, a heuristic selection mechanism should consist of particular analysis

components to facilitate the adaptivity of the selection process.

2.1 Heuristic set feature

An analysis tool or a learning component should be designed based on a set of charac-

teristics that determine the behavior of the heuristics. The first characteristic is related

to the heuristic set size. A heuristic set with many heuristics has a higher probability

of finding satisfactory solutions regarding a problem instance. Conversely, such a set

can be hard to manage due to the availability of many options to select. The quality of

heuristics is also critical about the set size. If the heuristics have similar performance,

then the set size can make no difference. Since this option is uncommon, it is required

to employ effective learning strategies. The second feature is the speed of the heuristics.

This characteristic may affect the number of decision steps for the selection process.

Hence, it is required to interpret this element with the improvement capabilities of the

heuristics. The heuristic specialisation is another factor. A heuristic dedicated to solve

a constraint or improve an objective can be considered in this category. In addition

to that, heuristics generating only improving or equal quality solutions such as hill

climbers or any other strict heuristic behavior come in this category. This feature list

can obviously be extended. The main purpose should be the usage of the most relevant

and effective features [1, ch.6] in a collaborative way to predict the future performance

of the heuristics.

2.2 Parameter and rule settings

Parameter-free strategies are interesting from a generality purpose perspective. Even

though such methodologies are called parameter-free, their behaviour depends on some

predetermined values or rules. For instance, simple random is a parameter-free heuristic

selection mechanism that gives an equal selection chance to each heuristic. The simple

random is parameter-free since its parameters are set from the beginning. Another

example is the improving or equal move acceptance mechanism. It accepts only better

or equal quality solutions. This method is based on a predetermined rule. That is,

the move acceptance method is parameter free, yet not rule-free. All similar methods

show that providing a totally independent mechanism seems impossible. Instead, the

proposed algorithms should be able to control their parameters or rules according to

the search space and the environmental settings with the aim of decreasing the user

effect on the algorithm’s performance.

3 Hyper-heuristic

A traditional selection hyper-heuristic requires a selection mechanism to determine the

best heuristic to apply at each decision step. In addition, it needs a move acceptance

strategy to check whether the constructed/visited solution is accepted with regard to its

quality and the current state of the search. These consecutive operations are performed

until the stopping condition is met. In this study, a new heuristic selection mechanism

and a move acceptance strategy including additional components are proposed. In the

following paragraphs, these submechanisms are explained in detail.

3.1 Heuristic selection

3.1.1 Dynamic heuristic set

In [27,34], a dynamic heuristic set strategy for the heuristic selection process was

studied. The motivation behind this approach is determining elite heuristic subsets

during specific iteration intervals. Similar approaches aiming to eliminate heuristics

were studied in [13,15,23,24]. The dynamic heuristic set strategy was carried out by

eliminating heuristics that are expected to perform worse compared to the rest and

keep the best ones determined via some performance criteria. These criteria reflect

the performance changes of the heuristics during the search. Performance changes are

determined based on the number of new best solutions found, the total fitness improve-

ment and disimprovement per unit execution time. These elements are used according

to their importance for the search process. For instance, finding a new best solution

is more important than improvement without a new best solution. That is, a heuris-

tic that reaches a new best solution is considered as a higher quality heuristic. This

information was gathered during a phase composed of a predetermined number of it-

erations. In the new selection strategy, i.e. adaptive dynamic heuristic set (ADHS), an

updated version of this performance metric is proposed.

A weighted sum of different performance elements was used to determine the quality

of different search strategies. In equation (1), the details of the performance measure-

ment for each heuristic is given. In this equation, Cp,best(i) denotes the number of new

best solutions found. fimp(i) and fwrs(i) show the total improvement and worsening

provided. fp,imp(i) and fp,wrs(i) refer to the same measurement be it in a particular

phase only. tremain refers to the remaining time to finish the whole search process.

tspent(i) and tp,spent(i) are the time spent by heuristic i until now, the same measure-

ment during a phase respectively. And each wi denotes the weight of a performance

element. The weights are set as {w1 >> w2 >> w3 >> w4 >> w5} to provide a strict

priority between the given performance elements. Thus, for instance, if the first per-

formance element of a heuristic has the highest value, than the rest of the performance

elements have no effect on the overall pi of the corresponding heuristic.

pi = w1

[(

Cp,best(i) + 1
)2(

tremain/tp,spent(i)
)]

+

w2

(

fp,imp(i)/tp,spent(i)
)

− w3

(

fp,wrs(i)/tp,spent(i)
)

+

w4

(

fimp(i)/tspent(i)
)

− w5

(

fwrs(i)/tspent(i)
)

(1)

In this performance criterion, the first performance element is related to the heuris-

tic’s capability of finding a new best solution. In the aforementioned studies, this ele-

ment was just a counter of new best solutions found by a heuristic. However, it may

cause some difficulties especially if some heuristics can find new best solutions only

after a long time. For that reason, it can be useful to apply a heuristic that may find

more new best solutions during the given execution time. In addition to that, since this

strategy works based on the exclusion of heuristics, it can be useful to have plus 1 for

the first part. Otherwise, a relatively slow heuristic can stay in the heuristic set regard-

less of its speed because of finding new best solutions. The second element is used to

select improving heuristics and the third element is employed to choose heuristics that

deteriorate solutions less. The last two elements have a similar aim, but their values

are independent from phases. They are calculated using the values collected until that

moment.

The number of phases where a heuristic stays out of an elite heuristic set is denoted

by tabu duration. For decreasing user dependency, the tabu duration and the number

of iterations for one phase are calculated based on the number of heuristics available in

the elite heuristic subset. The tabu duration is set to d =
√
2n and the phase length (pl)

is defined as the product of the tabu duration and a constant value (phfactor = 500).

These values are recalculated at the end of each phase. Since the calculated pi values

are a combination of different quantities and they are noisy, the performance values are

converted into a quality index (QI ∈ [1, n]) value. A heuristic with the lowest pi gets

1, the others get one unit more based on their order. The average (avg) of these QI

values is calculated to determine the heuristics that will be excluded. Tabu heuristics

are also attend this calculation with QI = 1.

avg =

⌊

(

n
∑

i

QIi

)

/n

⌋

(2)

Tabu duration adaptation : The tabu duration of a specific heuristic is increased if it

is successively excluded. In other words, the tabu duration is specifically determined for

each heuristic using d as the based value. This is required since the proposed exclusion

procedure gets a tabu heuristic back whenever its tabu status expires.

Phase length adaptation : The number of iterations per phase is determined as

pl = d ∗ phfactor. However, this value is updated based on the speed of the non-

tabu heuristics as whole for fairness. For that purpose, at the end of each phase, the

spent time per move concerning each non-tabu heuristic is calculated and the total of

all (tsubset) is used to determine the next phase length. In the following equations, the

simple formula for calculating the new phase length is given. A predefined constant

value is assigned to phrequested that denotes the number of phases requested during

the whole search process. For this study, phrequested = 100. Using it, a duration of a

phase (phduration) is calculated by dividing the total execution time by phrequested.

The resulting value is divided by tsubset to reach the new pl′. If the calculated value

is smaller than pl, then it is utilised as the new phase length. This process is repeated

at the end of each phase.

phduration = ttotal/phrequested

pl′ = phduration/tsubset (3)

The utilised constant values as well as the provided rules for adaptation purposes

regarding the ADHS are set based on the idea of giving chance to the existing heuristics

in the heuristic set to show their performance.

3.1.2 Learning automata

A learning automaton is a finite state machine that aims at learning the optimal action

out of a set of actions (A = {a1, . . . , an}) through interaction with an environment in

a trial and error manner [33]. During a learning process, the environmental response

(β(t) ∈ [0, 1]) to the selected action is used to update a probability vector p consisting

of the selection probabilities of the actions. The update operation is carried out using

an update scheme (U). The update scheme of the learning automata is based on equa-

tions (4) and (5). Equation (4) refers the update operation for the applied action and

Equation (5) is used to update the probabilities of the rest of the actions.

pi(t+ 1) = pi(t) +λ1 β(t)(1− pi(t))

−λ2(1− β(t))pi(t) (4)

if ai is the action taken at time step t

pj(t+ 1) = pj(t) −λ1 β(t)pj(t)

+λ2(1− β(t))[(r − 1)−1 − pj(t)] (5)

if aj 6= ai

In [28], a learning automaton with a linear update scheme, linear reward-inaction,

was employed as a heuristic selection mechanism. During the learning process, ac-

tions were considered as low-level heuristics. Heuristics that find new best solutions

were rewarded. The changing heuristic probabilities were used like roulette wheel se-

lection. In this study, linear reward-punishment scheme is used to update heuristic

probabilities with respect to finding a new best solution, improving the current solu-

tion, worsening the current solution and finding a solution with equal quality as the

current solution. Related learning rates were set in a decreasing manner in the given

order as {λ1 = 0.1, λ1 = 0.01, λ2 = 0.002, λ2 = 0.001} without extensive tuning. The

first two cases refer to the learning rates that are used for rewarding and the last two

options show the learning rates for punishment. Differently from the above mentioned

application of the learning automaton, it is just used to keep track of performance

changes during different phases of the dynamic heuristic set process. In the beginning

of each phase, the learning probabilities are reset. In addition, different learning rates

are used for different heuristics. The underlying idea behind this approach is to project

the speed of heuristics to the probability updates because it would be unfair to use the

same reward/punishment for a very slow and a fast heuristic [4]. For instance, HyFlex

contains local search heuristics that only return improving or equal solutions. They are

generally expected to be more time consuming compared to other heuristic types. For

that reason, the performance differences among heuristics should be interpreted based

on their speed. The learning rate of the heuristics are determined using Equation (6).

In this equation, Cmax refers to the number of moves spent per unit time by the fastest

heuristic. Ci,move denotes the same value for heuristic i. The resulting value (λmult)

is used as a multiplier for the initial learning rate. If this multiplier makes the related

learning rate increase more than its predetermined limit, then the learning rate is set

to a predetermined value.

λmult = Cmax/Ci,move (6)

3.1.3 Relay hybridisation

In [30], heuristics were divided into two types: mutational heuristics and hill climbers.

They were used within four different frameworks. One of the frameworks, FC , offers

selecting a mutational heuristic first and applying a pre-determined hill climber to

the visited solution by the selected mutational heuristic. The experimental results

showed that FC is a very effective strategy to use. In this study, we proposed a relay

hybridisation approach to determine a pair of heuristics that can be used consecutively,

like FC , to find superior results. For that purpose, a list of the best heuristics, when

applied just after a specific heuristic, is determined. This list is updated in First-In-

Last-Out manner, by adding a new heuristic to the end of the list and removing the

first one to keep the size of the heuristic set fixed if the list is full. After applying

a relatively worse performing heuristic based on the provided performance metric, a

heuristic is randomly chosen from its list and applied to the solution generated by

this heuristic. Since the heuristic list can include different heuristics more than once, a

random selection strategy chooses a heuristic among weighted heuristics. For instance,

in a list size of 10, a specific heuristic may be present 5 times while the rest of the list

may be occupied by the other heuristics. In such a list, the probability of selecting the

5-times occuring heuristic is 50%. That is, even if the selection mechanism is random,

the end product is a weighted selection mechanism like roulette wheel.

This strategy is applied based on the value of (Cphase/pl). Cphase denotes the

number of iterations passed within a phase. A random probabilistic value p ∈ [0 : 1] is

generated and the relay hybridisation is applied if p ≤ (Cphase/pl). The pseudocode of

the method is depicted in Algorithm 1.

Algorithm 1: Relay hybridisation

Input: lsize > 0 ∧ p, p′ ∈ [0 : 1]
if p ≤ (Cphase/pl) then

1 select LLHtabu and apply to S → S′;
2 if size(li) > 0 and p′ <= 0.5 then

3 select a LLH from li and apply to S′ → S′′;
4 else

5 select a LLHnonTabu and apply to S′ → S′′;
end

end

In Figure 1, an example of the relay hybridisation is shown. In this example, ap-

plying heuristic pairs involving LLH2 LLH5 and LLH2 LLH3 found new best

solutions before. Whenever LLH2 is called and if the relay hybridisation is decided to

be used, then it is determined whether a consecutive heuristic is randomly chosen from

the heuristics that are currently available in the heuristic subset or from its pair list.

The selected heuristic is consecutively applied to the solution at hand. If the resulting

solution is a new best solution, then the selected heuristic is added to the end of the

list.

Adaptive heuristic list

Random heuristic selection

remove the heuristic
from the list

add a new heuristic5 3 35 3

2

Fig. 1 Relay hybridisation

For some problem domains with some heuristic sets, it may not be possible to

find effective heuristic pairs. Therefore, a similar tabu strategy that is used for the

heuristic exclusion process is employed. If no new best solution is found by the relay

hybridisation after a phase, then this feature is disabled for one phase. Furthermore, if

this consecutively happens, then the tabu duration is increased by 1. This value stays

the same whenever the tabu duration reaches its upper bound. If it can find a new best

solution again, then the tabu duration is set to its initial value, namely 1.

Heuristic adaptation : HyFlex provides an opportunity to modify some of the heuris-

tics in an informed manner. It is possible to increase or decrease the perturbation effect

of a mutational heuristic. In addition to that, it is also allowed to change the depth

of the search for local search heuristics. In the proposed approach, the deterioration

effects of the mutational heuristics and the search depth of the hill climbers was up-

dated only for the relay hybridisation. If a hill climber can find a new best solution

more than fives times, then its search depth is set to 1.0. Otherwise, its value is set to

(0.1+(phpassed/pl)0.4). phpassed is the number of iterations passed during the current

phase. The second part is used also for the mutation operators.

3.2 Move acceptance

Move acceptance mechanisms have more influence on the performance of a hyper-

heuristic [30]. They determine the way to traverse the search space. One of the main

concerns of the move acceptance mechanisms is the acceptability of worsening solutions.

Accepting a worsening solution is a widely accepted strategy to prevent from getting

stuck around a solution. In [28], a move acceptance strategy was proposed, i.e. iteration

limited threshold accepting (ILTA) which accepts worsening solutions in a controlled

manner. ILTA immediately accepts improving or equal solutions. If the hyper-heuristic

cannot find new best solutions during a pre-determined number of iterations, then, a

worsening solution is accepted. This operation is decided based on the value of the

best solution found and a constant value determining a range. In [27], an adaptive

version of ILTA (AILTA) was proposed. In this move acceptance, a second and higher

range value is determined. If the hyper-heuristic cannot find a new best solution using

a given range value, then this range value is increased to enable accepting much worse

solutions. This is required to get rid of local optima.

Algorithm 2: AILLA Move Acceptance

Input: i = 1 ∧K ≥ k ≥ 0 ∧ l > 0
for i=0 to l-1 do bestlist(i) = f(Sinitial)

1 if adapt iterations ≥ K then

2 if i < l− 1 then

3 i++
end

end

4 if f(S′) < f(S) then

5 S ← S′

6 w iterations = 0
7 if f(S′) < f(Sb) then

8 Sb ← S′

9 i = 1
10 adapt iterations = 0
11 bestlist.remove(last)
12 bestlist.add(0, f(Sb))

end

13 else if f(S′) = f(S) then

14 S ← S′

15 else

16 w iterations++
17 adapt iterations++
18 if w iterations ≥ k and f(S′) ≤ bestlist(i) then

19 S ← S′ and w iterations = 0
end

end

In the proposed hyper-heuristic, the underlying idea behind list-based threshold

accepting [25] was employed to decrease the parameter dependency of AILTA. The new

move acceptance strategy, i.e. adaptive iteration limited list-based threshold accepting

(AILLA), accepts worsening solutions using the fitness values of the previously visited

best solutions. The best fitness visited previously is used as the first threshold value.

If it is not good enough to find a new best solution, then a higher fitness from the list

(bestlist with l size) is used to decide about the acceptability of the worsening solutions.

The pseudocode of AILLA is presented in Algorithm 2. In addition, the iteration limit

(k) is updated whenever a new best solution is found. In Equation (7), the details of

this update process is shown. In this equation, iterelapsed is the number of iterations

elapsed and texec refers to the total execution time.

k =

{

((l − 1)× k + iterelapsed)/l, if cw = 0

((l − 1)× k +
∑cw

i=0 k × 0.5i × tf)/l, otherwise
(7)

tf = (texec − telapsed)/texec

cw =
⌊

iterelapsed/k
⌋

4 Experiments

Experiments were carried out on the four problems within HyFlex, namely max SAT

[21], bin packing [22], permutation flow shop [35] and personnel scheduling [17] prob-

lems. HyFlex provides 10 instances for each problem. Each instance was tested for

10 runs. Each run is executed for 10 minutes using Pentium Core 2 Duo 3 GHz PCs

with 3.23 GB memory. In addition to the developed hyper-heuristic, three additional

hyper-heuristics were tested. They are the combinations of simple random (SR) se-

lection with AILLA, simulated annealing (SA) [3] and improving or equal (IE) move

acceptance mechanisms.

4.1 Computational Results

For the bin packing problem, it is possible to determine an effective hyper-heuristic

approach. The experimental results are shown in Table 2. Based on the Wilcoxon test,

ADHS-AILLA performs significantly better than the other hyper-heuristics. When the

heuristic selection mechanism ADHS is changed to SR, then a significant performance

decrease comes out. This shows that for the bin packing problem with the given heuris-

tic set, a learning or adaptation strategy concerning the selection procedure is required.

On the other hand, there is no a statistically significant difference between SR-AILLA

and SR-IE. However, they both generate superior results compared to SR-SA. This

performance difference reveals the necessity of a more selective acceptance strategy re-

garding accepting worsening solutions. In other words, immediate acceptance of wors-

ening solutions causes missing improving neighboring solutions.

For the permutation flowshop scheduling problem, again ADHS-AILLA statistically

shows the best performance. Since SR-AILLA performs worse than ADHS-AILLA, it

is apparent that ADHS provides a better hyper-heuristic opportunity. On the contrary,

SR-AILLA consistently yields better results than SR-SA and SR-IE. This is a proof

BP
ADHS-AILLA SR-AILLA

MIN AVG MAX STD MIN AVG MAX STD

Inst1 0.00594 0.00650 0.00703 0.00032 0.01177 0.01513 0.01668 0.00172

Inst2 0.00353 0.00652 0.00727 0.00107 0.01234 0.01583 0.02139 0.00262

Inst3 0.02029 0.02187 0.02275 0.00089 0.02110 0.02258 0.02371 0.00091

Inst4 0.01969 0.02138 0.02413 0.00151 0.02039 0.02239 0.02477 0.00138

Inst5 0.00034 0.00077 0.00456 0.00133 0.00034 0.00298 0.00510 0.00228

Inst6 0.00306 0.00314 0.00338 0.00010 0.00312 0.00440 0.00844 0.00214

Inst7 0.01099 0.01352 0.01584 0.00232 0.02226 0.02797 0.03223 0.00357

Inst8 0.02459 0.02716 0.03063 0.00245 0.08273 0.08684 0.09032 0.00269

Inst9 0.07273 0.07830 0.08560 0.00360 0.11710 0.12361 0.13272 0.00533

Inst10 0.01692 0.02292 0.02997 0.00377 0.03755 0.04219 0.04982 0.00449

BP
SR-SA SR-IE

MIN AVG MAX STD MIN AVG MAX STD

Inst1 0.04048 0.04171 0.04441 0.00142 0.01197 0.01630 0.02041 0.00204

Inst2 0.03999 0.04213 0.04521 0.00179 0.01192 0.01521 0.01678 0.00197

Inst3 0.02455 0.02618 0.02723 0.00088 0.02275 0.02403 0.02519 0.00104

Inst4 0.02686 0.02906 0.03291 0.00174 0.02347 0.02494 0.02651 0.00111

Inst5 0.02230 0.02592 0.02773 0.00196 0.00035 0.00508 0.00647 0.00173

Inst6 0.02500 0.02536 0.02592 0.00034 0.00325 0.00555 0.00844 0.00250

Inst7 0.11090 0.11628 0.12430 0.00441 0.02217 0.02738 0.03205 0.00321

Inst8 0.12023 0.12507 0.13022 0.00305 0.08070 0.08456 0.08816 0.00282

Inst9 0.11598 0.11973 0.12552 0.00346 0.11372 0.12454 0.13352 0.00584

Inst10 0.03335 0.03451 0.03620 0.00089 0.03738 0.04309 0.05192 0.00559

Table 2 The results of the hyper-heuristics on the bin packing problem

FS
ADHS-AILLA SR-AILLA

MIN AVG MAX STD MIN AVG MAX STD

Inst1 6263 6293 6308 12,9 6285 6299 6325 10,66

Inst2 6251 6273 6309 18,56 6226 6258 6280 17,57

Inst3 6315 6337 6354 11,41 6326 6339 6365 12,58

Inst4 6307 6358 6366 18,16 6323 6348 6366 20,14

Inst5 6365 6383 6402 12,43 6355 6389 6412 16,97

Inst6 10494 10499 10506 3,36 10502 10511 10526 8,53

Inst7 10923 10928 10972 15,5 10923 10934 10958 14,49

Inst8 26261 26301 26345 30,38 26301 26384 26435 44,73

Inst9 26754 26792 26816 21,75 26809 26865 26923 38,49

Inst10 26618 26676 26710 24,92 26638 26714 26751 33,98

FS
SR-SA SR-IE

MIN AVG MAX STD MIN AVG MAX STD

Inst1 6291 6326 6364 20,12 6321 6347 6388 22,26

Inst2 6249 6296 6322 24,62 6261 6303 6340 26,68

Inst3 6335 6359 6386 18,17 6324 6369 6428 27,29

Inst4 6323 6351 6366 17,73 6330 6357 6374 15,24

Inst5 6364 6406 6456 27,56 6374 6405 6446 19,17

Inst6 10501 10538 10556 19,46 10497 10533 10555 19,9

Inst7 10923 10947 11017 30,33 10923 10947 11017 26,55

Inst8 26485 26519 26564 32,24 26413 26500 26649 74,37

Inst9 26888 26964 27046 42,16 26881 26978 27093 70,01

Inst10 26736 26781 26890 45,14 26732 26806 26876 59,29

Table 3 The results of the hyper-heuristics on the permutation flowshop scheduling problem

for the effect of the proposed move acceptance strategy. Besides, the performances of

SR-SA and SR-IE are similar.

The experimental results (Table 4) on the personnel scheduling problem are hard

to interpret because the number of iterations spent during the given execution time is

limited. That is, there is not much time for exploration. Thus, a hyper-heuristic that

reacts fast may have a higher chance to provide the best solutions. With the given

PS
ADHS-AILLA SR-AILLA

MIN AVG MAX STD MIN AVG MAX STD

Inst1 3300 3326 3388 27.46 3317 3352 3391 22.93

Inst2 2115 2231 2495 108.26 2070 2362 2592 151.26

Inst3 295 338 380 25.41 405 1039 1885 677.92

Inst4 10 21 30 5.27 22 29 35 4.2

Inst5 17 23 29 3.88 26 30 36 3.06

Inst6 19 25 30 3.33 19 32 38 5.47

Inst7 1106 1159 1216 50.19 1117 1240 1404 78.35

Inst8 2176 2268 2359 56.46 2179 2255 2369 59.76

Inst9 3130 3252 3435 102.2 3166 3316 3527 118.08

Inst10 9438 9624 9781 107.33 9526 9642 9826 103.53

PS
SR-SA SR-IE

MIN AVG MAX STD MIN AVG MAX STD

Inst1 3313 3368 3426 37.22 3307 3355 3432 36.6

Inst2 2295 2556 2725 135.63 2158 2558 3430 348.21

Inst3 480 1560 3160 1047.48 435 1033 1870 683.33

Inst4 17 27 36 5.1 25 30 36 3.44

Inst5 21 29 38 5.02 23 30 38 5.25

Inst6 21 31 43 6.33 24 32 39 5.44

Inst7 1100 1212 1411 102.46 1116 1268 1510 130.83

Inst8 2186 2256 2334 36.83 2183 2266 2464 73.47

Inst9 3159 3289 3347 61.69 3164 3296 3442 87.98

Inst10 9490 9646 9824 101.65 9380 9669 10050 192.04

Table 4 The results of the hyper-heuristics on the personnel scheduling problem

SAT
ADHS-AILLA SR-AILLA

MIN AVG MAX STD MIN AVG MAX STD

Inst1 8 15 20 4.65 8 11 17 2.73

Inst2 24 29 37 4.62 20 25 29 2.82

Inst3 23 25 30 2.55 17 21 29 3.27

Inst4 7 9 11 1.51 7 10 13 1.84

Inst5 2 6 10 2.76 3 4 6 1.16

Inst6 3 6 11 2.25 3 5 7 1.45

Inst7 9 15 23 4.6 12 15 19 2.67

Inst8 8 18 32 8.17 8 24 39 11.64

Inst9 2 5 9 2.2 1 3 6 1.49

Inst10 2 5 8 1.89 2 3 6 1.35

SAT
SR-SA SR-IE

MIN AVG MAX STD MIN AVG MAX STD

Inst1 6 9 14 2.26 11 14 21 3.27

Inst2 20 24 27 2.21 24 27 31 2.07

Inst3 16 18 22 1.63 19 23 28 2.75

Inst4 5 6 7 0.82 18 24 27 2.95

Inst5 1 3 4 0.97 5 10 12 2.41

Inst6 1 3 4 1.14 6 11 14 2.46

Inst7 9 12 15 2.23 26 30 36 3.34

Inst8 3 9 16 4.04 37 44 50 3.84

Inst9 1 3 5 1.16 3 5 8 1.73

Inst10 0 2 3 0.82 3 5 7 1.51

Table 5 The results of the hyper-heuristics on the Max SAT problem

learning strategy, ADHS-AILLA performs the best. There is no statistically different

performance between the rest of the hyper-heuristics.

In Table 5, the results on Max SAT are given. For this problem, SR-SA provides

significant performance improvement differently from the other three problems. Be-

sides, SR-AILLA takes the second place and leads to superior results compared to

ADHS-AILLA and SR-IE. These results show that ADHS worsens the performance of

the hyper-heuristic for Max SAT. Moreover, SA functions way better than AILLA and

IE.

BP MSAT FS PS OverAll

ADHS-AILLA 85.0 80.0 87.0 56.0 308.0

HH1 38.0 37.0 27.5 63.5 166.0

HH2 39.0 70.5 24.0 63 196.5

HH3 76.0 47.5 19.5 19 162.0

HH4 59.0 34.5 61.0 54 208.5

HH5 9.0 0.5 10.0 37.0 56.5

HH6 61.0 67.0 71.0 1.0 200.0

HH7 22.0 42.0 26.0 58.0 148.0

HH8 1.0 11.0 64.0 38.5 114.5

Table 6 The comparison of ADHS-AILLA and the hyper-heuristics (HH1 HH8) from the
CHeSC competition website (higher values are better)

In Table 6, ADHS-AILLA was compared to the hyper-heuristic results announced

at the CHeSC 2011 competition website1. The comparison was made via the Formula

1 scoring system. The best hyper-heuristic gets 10, the rest get 8,6,5,4,3,2,1 based

on their performance order. That is, only top eight hyper-heuristics earn points. The

comparisons are carried out with only one run per instance. The comparison results

show that ADHS-AILLA wins bin packing, Max SAT and the flowshop scheduling

tracks. It comes fourth for the personnel scheduling problem. According to the over all

performance, ADHS-AILLA wins.

4.2 Relay hybridisation

In Figure 2, the effect of the proposed relay hybridisation on different problems is

shown. Consecutively applied heuristics reach new best solutions during the whole

search process for the bin packing problem. On the other hand, for the max SAT and

flowswhop scheduling problems, this happens only at the early stages of the search.

For personnel scheduling, the effect of the hybridisation is also limited. However, as

was mentioned before, the number of iterations spent for this problem is quite small

compared to the other problems. For the bin packing problem, mostly the crossover

operator is useful for generating the first solution that is sent to the second heuristic.

As the second heuristic, one of the local search heuristics (LLH4) performs as the

best second heuristic within pairs. One can consider LLH0, LLH2 and LLH3 as the

other second heuristics. For max SAT, mutational heuristics (LLH3) LLH4, with the

following local search heuristics LLH0 and LLH1 help the hyper-heuristic for finding

new best solutions. For the permutation flowshop, mutational (LLH0, LLH1) and ruin-

recreate (LLH6, LLH6) heuristics with local search heuristics (LLH7, LLH8, LLH10)

construct effective heuristic pairs. For personnel scheduling, again mutational (LLH11)

and ruin-recrate heuristics (LLH5, LLH6) with one particular local search heuristic

(LLH3) perform effectively. All these heuristic combinations indicate that the proposed

hybridisation mechanism can determine effective heuristic pairs. As expected, heuristic

pairs mostly behave as memetic algorithms.

1 http://www.asap.cs.nott.ac.uk/chesc2011/ – results on 15/01/2011

0 100 200 300 400 500 600
0

1

2

3

4

5

6

Time

H
eu

ris
tic

 In
de

x
Bin Packing

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

Time

H
eu

ris
tic

 In
de

x

Max SAT

0 100 200 300 400 500 600
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Time

H
eu

ris
tic

 In
de

x

Permutation Flowshop

0 100 200 300 400 500 600
0
1
2
3
4
5
6
7
8
9

10
11

Time

H
eu

ris
tic

 In
de

x
Personnel Scheduling

Fig. 2 Heuristic combinations from relay hybridisation (squares and circles show the applied
heuristics consecutively)

4.3 Heuristic selection

In Figure 3, the effect of the proposed heuristic selection mechanism is shown. For the

bin packing and permutation flowshop scheduling problems, ADHS calls more heuris-

tics than SR during the given execution time. This situation reverses for the max SAT

and personnel scheduling problems. This shows that the ADHS selection mechanism

may invest time in time consuming but effective heuristics if it is required. In Figure

4, the number of heuristic calls of each heuristic over time is illustrated. For the given

heuristic sets, the proposed selection strategy determines a distinction between heuris-

tic performances. For the personnel scheduling and permutation flowshop scheduling

problems, performance differences look stable. However, for the bin packing and max

SAT problems, some heuristics behave differently during the search. In other words,

some heuristics started to be selected more and others less. This shows that, for solving

the bin packing and max SAT problems, considering performance changes compared

to each other over time can be effective.

0 100 200 300 400 500 600

0.5

1

1.5

2

2.5

x 10
5

Time
 (a)

Ite
ra

tio
n

ADHS−AILLA
SR−AILLA

0 100 200 300 400 500 600

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time
 (b)

B
es

tF
itn

es
s

ADHS−AILLA
SR−AILLA

0 100 200 300 400 500 600

1

2

3

4

5

6

7

8

x 10
4

Time
 (a)

Ite
ra

tio
n

ADHS−AILLA
SR−AILLA

100 200 300 400 500 600
0

10

20

30

40

50

60

Time
 (b)

B
es

tF
itn

es
s

ADHS−AILLA
SR−AILLA

0 100 200 300 400 500 600

1

2

3

4

5

6

7

8

x 10
5

Time
 (a)

Ite
ra

tio
n

ADHS−AILLA
SR−AILLA

0 100 200 300 400 500 600

6300

6350

6400

6450

6500

6550

6600

Time
 (b)

B
es

tF
itn

es
s

ADHS−AILLA
SR−AILLA

0 100 200 300 400 500 600

200

400

600

800

1000

1200

Time
(a)

Ite
ra

tio
n

ADHS−AILLA
SR−AILLA

100 200 300 400 500 600
3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

4000

Time
(b)

B
es

tF
itn

es
s

ADHS−AILLA
SR−AILLA

Fig. 3 The effect of the proposed selection mechanism (the chart pairs belong to the bin pack-
ing, max SAT, flowshop scheduling and personnel scheduling problems from top to bottom)

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

Time

N
um

be
r

of
 c

al
ls

Bin Packing

0 100 200 300 400 500 600
0

2000

4000

6000

8000

10000

12000

Time
N

um
be

r
of

 c
al

ls

Max SAT

0 100 200 300 400 500 600
0

2

4

6

8

10

x 10
4

Time

N
um

be
r

of
 c

al
ls

Permutation Flowshop

0 100 200 300 400 500 600
0

20

40

60

80

Time

N
um

be
r

of
 c

al
ls

Personnel Scheduling

Fig. 4 The number of calls for each heuristic over the given problem domains by ADHS-
AILLA

4.4 Varying performance of the heuristics

In Figure 5, the varying QI values of each heuristic during the search process are

illustrated. The charts show that even if LLH3 is a hill climber, it is frequently excluded

from the heuristic set with the only crossover operator, LLH6. For the remaining

heuristics, it is possible to see performance changes based on the employed performance

metric. During early iterations, a mutational heuristic (LLH0), a ruin-recreate heuristic

(LLH2) and a hill climber (LLH4) take the lead to improve the solution at hand.

However, after a while, the other ruin-recreate heuristic (LLH1) with a mutational

heuristic (LLH5) start to perform better. These results show that the performance

variation of different heuristics should be regularly monitored and analysed.

0 100 200 300 400 500 600
0
1
2
3
4
5
6

LLH0

0 100 200 300 400 500 600
0
1
2
3
4
5
6

LLH1

0 100 200 300 400 500 600
0
1
2
3
4
5
6

LLH2

0 100 200 300 400 500 600
0
1
2
3
4
5
6

LLH3

0 100 200 300 400 500 600
0
1
2
3
4
5
6

LLH4

0 100 200 300 400 500 600
0
1
2
3
4
5
6

LLH5

0 100 200 300 400 500 600
0
1
2
3
4
5
6

LLH6

Fig. 5 QI-avg values of the bin packing heuristics (Quality index (QI) values regarding the
performance of the heuristics are shown as solid lines, average (avg) of the QI values are shown
as dotted lines. The heuristics with a lower QI than avg are excluded.)

4.5 Set size

In Figure 6, changes of the heuristic set size over time is demonstrated. For the bin

packing problem, the exclusion process eliminates at most 3 heuristics and the set

size generally changes between 4 and 5. For max SAT, fluctuations of the set size is

considerably less. It can be explained by the number of phases because the existing

SAT heuristics can spend more time than bin packing heuristics. The differences on

the number of iterations per time is shown in Figure 3. For the flowshop scheduling

problem, the set size is reduced to 6 out of 16 heuristics and it changes mainly between

6 and 9. For the last problem domain, even one phase could not be completed due to

the previously mentioned speed issues.

5 Conclusion

In the literature, there exist different kinds of problems with various solution strategies.

Many of these problems are hard to solve. Hence, there is a tendency of dedicated

developing heuristic methods for solving these problems. Among these approaches, it

is expected that some of them work exceptionally well on some problems or problem

instances, but generate inferior results on others. Hyper-heuristics search over such

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

Time

S
et

 S
iz

e

Bin Packing

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

Time

S
et

 S
iz

e

Max SAT

0 100 200 300 400 500 600
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Time

S
et

 S
iz

e

Permutation Flowshop

0 100 200 300 400 500 600
0
1
2
3
4
5
6
7
8
9

10
11
12

Time

S
et

 S
iz

e

Personnel Scheduling

Fig. 6 Changes on the heuristic set size over time by ADHS-AILLA

low-level algorithms to provide generality by using their strengths. With problem-

independency, their generality level increases. In this research, a new selection hyper-

heuristic was designed and implemented on the hyper-heuristic software framework,

i.e. HyFlex. The developed approach consists of a dynamic heuristic set strategy that

determines the best heuristic subsets along a number of iterations. For increasing the

effectiveness of this elimination method, a learning automaton and a pairwise heuristic

hybridisation mechanism were employed. Also, a new threshold based dynamic move

acceptance strategy was accommodated. A set of experiments was carried out with

three additional hyper-heuristics over four problem domains with their specific heuristic

sets. The experimental results indicated that the designed hyper-heuristic is an effective

strategy for the given problem instances and the heuristic sets. Although the hyper-

heuristic performs well on average, it still has some issues. For the Max SAT problem,

SA generates superior results compared to AILLA. Moreover, ADHS performs worse

than SR for the same problem. The related results should be analysed to increase

the performance of the proposed hyper-heuristic. In addition, since there is room for

improvement concerning the personnel scheduling problem, the missing elements or

misleading algorithm settings should be determined.

In the future, the mentioned drawbacks will be investigated. Then, a feedback

mechanism will be settled between the selection process and the move acceptance

part. In addition, a two-phase heuristic selection mechanism consisting of selecting a

heuristic subset and choosing a heuristic from the selected heuristic set in connection

with a feedback mechanism will be utilised. Furthermore, the adaptive characteristic

of the move acceptance strategy will be boosted.

References

1. E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.
2. M. Bader-El-Den, R. Poli, and S. Fatima. Evolving timetabling heuristics using a grammar-

based genetic programming hyper-heuristic framework. Memetic Computing, 1(3):205–
219, 2009.

3. B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, G. Vanden Berghe, and
T. Wauters. A hyper-heuristic combined with a greedy shuffle approach to the nurse
rostering competition. In the 8th International Conference on the Practice and Theory of
Automated Timetabling (PATAT’10) - the Nurse Rostering Competition, 2010.

4. M. Bowling and M. Veloso. Rational and convergent learning in stochastic games. In
International Joint Conference on Artificial Intelligence, volume 17, pages 1021–1026.
Citeseer, 2001.

5. E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward. A genetic programming hyper-
heuristic approach for evolving two dimensional strip packing heuristics. IEEE Transac-
tions on Evolutionary Computation, 14(6):942–958, 2010.

6. E.K. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, and J.A. Vazquez-
Rodriguez. Hyflex: A flexible framework for the design and analysis of hyper-heuristics.
In Proceedings of the 4th Multidisciplinary International Scheduling Conference: Theory
& Applications (MISTA’09), pages 790–797, Dublin, Ireland, August 10–12 2009.

7. E.K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Handbook
of Meta-Heuristics, chapter Hyper-Heuristics: An Emerging Direction in Modern Search
Technology, pages 457–474. Kluwer Academic Publishers, 2003.

8. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J.R. Woodward. A classifi-
cation of hyper-heuristic approaches. Handbook of Metaheuristics, pages 449–468, 2010.

9. E.K. Burke, M. Hyde, G. Kendall, and John Woodward. Automatic heuristic generation
with genetic programming: Evolving a jack-of-all-trades or a master of one. In Proceedings
of Genetic and Evolutionary Computation Conference (GECCO’07), pages 1559–1565,
London, England, July 12–16 2007.

10. E.K. Burke, M.R. Hyde, and G. Kendall. Evolving bin packing heuristics with genetic
programming. In T.P. Runarsson, H-G.B., E. Burke, J.J. Merelo-Guervos, L.D. Whit-
ley, and X. Yao, editors, Proceedings of the 9th Parallel Problem Solving from Nature
(PPSN’IX), volume 4193 of LNCS, pages 860–869, Reykjavik, Iceland, September 9–13
2006. Springer-Verlag.

11. E.K. Burke, G. Kendall, M. Misir, and E. Ozcan. Monte carlo hyper-heuristics for exam-
ination timetabling. Annals of Operations Research, pages 1–18, 2010. 10.1007/s10479-
010-0782-2.

12. E.K. Burke, G. Kendall, D.L. Silva, R. O’Brien, and E. Soubeiga. An ant algorithm hyper-
heuristic for the project presentation scheduling problem. In Proceedings of the Congress
on Evolutionary Computation 2005 (CEC’05). Volume 3, pages 2263–2270, 2005.

13. E.K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyper-heuristic for timetabling
and rostering. Journal of Heuristics, 9(3):451–470, 2003.

14. E.K. Burke, S. Petrovic, and R. Qu. Case based heuristic selection for timetabling prob-
lems. Journal of Scheduling, 9(2):115–132, 2006.

15. K. Chakhlevitch and P. Cowling. Choosing the fittest subset of low level heuristics in a
hyperheuristic framework. In G. Raidl and J. Gottlieb, editors, Evolutionary Computation
in Combinatorial Optimization, volume 3448 of LNCS, pages 23–33. Springer Berlin /
Heidelberg, 2005.

16. P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling a
sales summit. In PATAT ’00: Selected papers from the Third International Conference on
Practice and Theory of Automated Timetabling III, pages 176–190, London, UK, 2001.
Springer-Verlag.

17. T. Curtois, G. Ochoa, M. Hyde, and J. A. Vazquez-Rodriguez. A hyflex module for the
personnel scheduling problem. Cs technical report, Univeristy of Nottingham, 2010.

18. K.A. Dowsland, E. Soubeiga, and E.K. Burke. A simulated annealing hyper-heuristic for
determining shipper sizes. European Journal of Operational Research, 179(3):759–774,
2007.

19. A.S. Fukunaga. Automated discovery of local search heuristics for satisfiability testing.
Evolutionary Computation, 16(1):31–61, 2008.

20. L. Han and G. Kendall. An investigation of a tabu assisted hyper-heuristic genetic al-
gorithm. In Proceedings of Congress on Evolutionary Computation (CEC’03), volume 3,
pages 2230–2237, 2003.

21. M. Hyde, G. Ochoa, T. Curtois, and J. A. Vazquez-Rodriguez. A hyflex module for the
maximum satisfiability (max-sat) problem. Cs technical report, Univeristy of Nottingham,
2010.

22. M. Hyde, G. Ochoa, T. Curtois, and J. A. Vazquez-Rodriguez. A hyflex module for the one
dimensional bin packing problem. Cs technical report, Univeristy of Nottingham, 2010.

23. G. Kendall and N.M. Hussin. An investigation of a tabu-search-based hyper-heuristic
for examination timetabling. In Multidisciplinary scheduling: theory and applications:
1st International Conference, MISTA’03: Nottingham, UK, 13-15 August 2003: selected
papers, page 309. Springer Verlag, 2005.

24. G. Kendall and N.M. Hussin. A tabu search hyper-heuristic approach to the examination
timetabling problem at the mara university of technology. In Proceedings of the 5th Prac-
tice and Theory of Automated Timetabling (PATAT’04), volume 3616 of LNCS, pages
270–293. Springer, 2005.

25. D.S. Lee, V.S. Vassiliadis, and J.M. Park. List-based threshold-accepting algorithm for
zero-wait scheduling of multiproduct batch plants. Industrial & Engineering Chemistry
Research, 41(25):6579–6588, 2002.

26. J.G. Marn-Blzquez and S. Schulenburg. A hyper-heuristic framework with xcs: Learning to
create novel problem-solving algorithms constructed from simpler algorithmic ingredients.
In T. Kovacs, X. Llor, K. Takadama, P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors,
IWLCS, volume 4399 of LNCS, pages 193–218. Springer, 2007.

27. M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe. Hyper-heuristics with
a dynamic heuristic set for the home care scheduling problem. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC’10), pages 2875–2882, Barcelona, Spain,
July 18–23 2010.

28. M. Misir, T. Wauters, K. Verbeeck, and G. Vanden Berghe. A new learning hyper-heuristic
for the traveling tournament problem. In Proceedings of the 8th Metaheuristic Interna-
tional Conference (MIC’09), Hamburg, Germany, 2009.

29. A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning. In
Metaheuristics: Computer Decision-Making, pages 523–544. Kluwer Academic Publishers,
2003.

30. E. Ozcan, B. Bilgin, and E.E. Korkmaz. A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis, 12(1):3–23, 2008.

31. E. Ozcan, M. Misir, G. Ochoa, and E.K. Burke. A reinforcement learning - great-deluge
hyper-heuristic for examination timetabling. International Journal of Applied Metaheuris-
tic Computing, 1(1):39–59, 2010.

32. P. Ross, S. Schulenburg, J.G. Maŕın-Blázquez, and E. Hart. Hyper-heuristics: Learning
to combine simple heuristics in bin-packing problems. In W. B. Langdon, E. Cantú-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. We-
gener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, edi-
tors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’02),
pages 942–948, New York, July 9–13 2002. Morgan Kaufmann Publishers.

33. M.A.L. Thathachar and P.S. Sastry. Networks of Learning Automata: Techniques for
Online Stochastic Optimization. Kluwer Academic Publishers, 2004.

34. W. Vancroonenburg, M. Misir, B. Bilgin, P. Demeester, and G. Vanden Berghe. A
hyper-heuristic approach for assigning patients to hospital rooms. In Proceeedings of
the 8th International Conference on the Practice and Theory of Automated Timetabling
(PATAT’10), Belfast, Northern Ireland, August 10–13 2010.

35. J. A. Vazquez-Rodriguez, G. Ochoa, T. Curtois, and M. Hyde. A hyflex module for the
permutation flow shop problem. Cs technical report, Univeristy of Nottingham, 2010.

