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Abstract

The existence of several solution strategies for differentsearch and optimisation problems moti-
vates the use of these strategies in a collaborative way. These collaborative approaches are considered
in the context of hybridisation. Hyper-heuristics providehybridisation by performing search on mul-
tiple low-level heuristics for finding efficient solutions in a problem-independent manner. In this
study, a suite of simple moves is employed to solve real worldinstances of the ready-mixed concrete
delivery problem. These basic moves are used under a selection hyper-heuristic that makes use of
the new adaptive iteration limited list-based threshold accepting with a fixed limit and four others for
comparison. These hyper-heuristics are tested on a set of real world ready-mixed concrete delivery
problem instances and a performance analysis is carried out.

1 Introduction

The ready-mix concrete delivery problem is a complex vehicle routing and scheduling problem encoun-
tered in the construction sector. The problem considers scheduling deliveries of ready-mix concrete
(RMC) from central production centres to customers’ construction yards, using a large heterogeneous
fleet of trucks. Due to the perishable nature of RMC, these deliveries must be performed under strict
time constraints as the RMC may lose its quality (or even solidify) during transport. Furthermore, cus-
tomers typically require a large amount of RMC that cannot be delivered bya single truck, necessitating
multiple truck deliveries. To guarantee the quality of the concrete structure,it is important to avoid large
time gaps between these deliveries as they are handled sequentially at a construction yard.

The concrete delivery problem represents main characteristics of both scheduling and routing prob-
lems. It has been looked at in a limited number of studies. A decision support system was developed to
solve the ready-mixed concrete delivery problem consisting of routing for pumping vehicles and schedul-
ing of concrete delivery vehicles [17]. In [11], genetic algorithms wereused to determine the dispatching
sequence of the trucks and a simulation technique was used for detecting time information regarding each
operation. Different neural network models based on feed-forwardand Elman recurrent networks were
proposed in [12]. The problem was decomposed into the assignment of orders to the production centres
and the assignment of trucks in [20, 21]. A two-phase approach involving genetic algorithms and a con-
struction heuristic was designed. A mixed-integer programming model as well as a local search strategy
capable of solving large real-world problem instances were studied in [1]. In [26], the problem was
modelled as an integer multicommodity network flow problem while at the same time an improvement
strategy using variable neighbourhood search was studied. In [25], ahybrid approach involving variable
neighbourhood search and mixed integer linear programming supported bya very large neighbourhood
search strategy was proposed.

Hyper-heuristics are easy-to-use high level search mechanisms aiming to solve any search and opti-
misation problem. They are expressed as problem-independent search mechanisms designed to manage
a number of low-level search strategies [3]. The underlying motivation is touse the strength of each
utilised search strategy. This approach is expected to provide performance improvement over the use of
each method separately. Together with this high-level search approach,the problem-independent nature
of hyper-heuristics is helpful to elevate their generality level. In the literature, several hyper-heuristics
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have been developed and applied to various problems [4]. In [5], thesehyper-heuristic methods were
classified asselection hyper-heuristicsandgeneration hyper-heuristics. Selection hyper-heuristics are
composed from certain components to manage a set of low-level heuristics.These components involves
some learning devices such as choice function [9, 22], reinforcement learning [19, 24], case-based rea-
soning [8] and learning classifier systems [16] as well some meta-heuristicslike tabu search [13], sim-
ulated annealing [2, 7], late acceptance [23] and great deluge [14]. Generation hyper-heuristics focus
on generating these low-level heuristics. Genetic programming [6] is the widely used option for such
strategies.

In the present study, the ready-mixed concrete delivery problem consisting of a heterogeneous fleet of
vehicles has been investigated. For solving this problem, a new hyper-heuristic involving an adaptive list-
based acceptance mechanism is proposed. Besides the new hyper-heuristic, a group of hyper-heuristics
composed of certain methods from the literature has been experimented with a number of real world
problem instances and a performance analysis has been carried out. Inthe following section, the RMC
problem will be explained in further detail. Then, in Section 3, a discussion about selection hyper-
heuristics will be carried out. In the same section, the details of the proposedhyper-heuristic will also be
presented. In Section 4, the experimental results will be analysed. The last section contains a conclusion
and the discussion of possible future research.

2 The ready-mixed concrete delivery problem

The ready-mixed concrete (RMC) delivery problem considers a set oforders for RMC that need to be
met by delivering concrete from a set of production centres, using a pool of vehicles. The dilemma
here is to find a delivery schedule that completes all orders and minimises delays in deliveries, lags
between deliveries, wasted RMC and transportation time. Furthermore, each delivery needs to respect
some constraints related to the perishable nature of the RMC. Figure 1 showsan example of a simple
RMC delivery problem. In what follows, we describe the three main elements of the real world problem
that is subject of this paper.
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Figure 1: A RMC example

2.1 Production centres

Production centres are the locations where RMC is loaded into the trucks. Loading RMC requires a
certain amount of time (constant), which is specific to the equipment used at theproduction centre.
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2.2 Vehicles

Vehicles (trucks) are the main carriers of RMC that deliver the RMC at customers’ construction yards.
They are characterised by their volume, their pumpline length and their vehicletype. They can pick up
concrete from any of the production centres. They are assumed to be present at the first production centre.
Making a delivery follows the following sequence: 1) In this real-world problem, vehicles always take
an amount of concrete that is equal to their capacity. Loading the concreterequires a certain amount of
time that is specific to the production centre, as explained in Section 2.1. Furthermore, only one vehicle
can perform loading operations at a production centre at any time, so loading operations should therefore
not overlap. 2) Drive towards the construction yard. 3) Wait at the construction yard until the unloading
can be set up. 4) Set up equipment at the construction yard. This takes an amount of time specific to
the construction yard. This setup may overlap with a delivery already in progress. 5) Unload the RMC
at the discharge rate specified by the customer. Only one vehicle can perform unloading at any time, so
unloading operations may not overlap. 6) Return to a production centre for the next delivery.

Only a limited amount of time may pass between loading RMC at a production centre and unloading
it at a construction yard, due to the perishable nature of the RMC. Therefore, each delivery must be
finished with unloading after a specified amount of time,Tmax. This possibly limits the amount of RMC
that can be delivered by a vehicle, depending on the discharge rate used at the construction yard.

2.3 Orders

An ordero is described by its order quantityqo and a required discharge ratedo at which the concrete
is poured. This discharge rate determines the unloading time for a delivery:unloading a quantityq at a
discharge rated takesq/d time units. Each order has an earliest start time, before which no unloading
operations can be performed. Some required properties for the delivery vehicles can be specified per
order: 1) a customer can require a pumpline of a certain length for pouringconcrete 2) certain vehicle
types are prohibited by the customer. For example, some vehicle types might betoo big to enter a
customer’s construction yard. Any vehicle matching the required properties for an order can deliver
concrete to that customer.

2.4 Objective function

Symbol Description

o Order
d Delivery
O Set of all orders
D Set of all deliveries
Do Set of all deliveries for ordero
Co Requested concrete amount for ordero
Cd,o Capacity of the truck handling deliveryd for ordero
Wo Total waste for ordero (

∑

d∈Do

Cd,o − Co)
V Set of all trucks
Lo Lateness of the first delivery for ordero
tlag,d Time lag for deliveryd

(time gap between unloading end time of previous delivery and unloading start time of deliveryd)
psOKo,d is deliveryd serviced from the preferred station for ordero (∈ [0, 1])
Tv Total travelling time of a truckv
αi Weight for constrainti

Minimise:
fobjective =

∑

o∈O

(

α1 · Lo + α2Wo + α3
∑

d∈Do
psOKo,d + α4

∑

d∈Do
tlag,d

)

+ α5
∑

v∈V Tv

The RMC problem considered in this paper aims at minimising the following objective function
consisting of:

• the per-order lateness of thefirst delivery, weighted byα1,
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• the per-order wasted concrete, weighted byα2; i.e. equal to the total delivered volume of RMC
minus the ordered quantity,

• for each delivery, whether the RMC has been loaded at the preferredproduction centre,α3,

• the per-order lag between subsequent deliveries, weighted byα4,

• the total travelling time, weighted byα5.

The weights of the objective function have been set after discussion with the company:α1 =
10, α2 = 10, α3 = 1, α4 = 20, α5 = 20. In addition, the maximum time for completing a delivery
(Tmax) is set to 100 minutes.

3 Selection hyper-heuristics

A traditional selection hyper-heuristic is composed of two sub-mechanisms, namelyheuristic selection
andmove acceptance. A heuristic selection mechanism selects a low-level heuristic at each decision step.
Using the selected heuristic, a new partial/complete solution is constructed/visited. Then, the quality of
the resulting solution is examined relying on certain metrics by a move acceptancemechanism. After
that, it is decided whether to accept or reject the new solution. Figure 2 demonstrates a single point
search selection hyper-heuristic framework.
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Figure 2: A traditional single-point search selection hyper-heuristic

For solving the RMC problem, a hyper-heuristic using the simple random (SR)selection mechanism
[9] and a new move acceptance strategy, namely adaptive iteration limited list-based threshold accepting
with a fixed limit (AILLA-F) was constructed. SR randomly chooses heuristics and AILLA-F accepts
solutions which are visited by the selected heuristics using a list of previouslyfound best solutions
(bestlist). The literature reports on similar strategies maintaining the history of fitness values as a list
such as list-based threshold accepting [15] and late acceptance [23].

AILLA-F maintains a fixed-sized (l) list of previously visited new best solutions. Thus, whenever
a new best solution is found, the oldest element in the list is removed and the new value is added the
beginning of the list. The underlying idea is to use proper threshold values for different regions of
the search space. An earlier version of AILLA-F [18] considered a threshold level determined by a
constant value and by the current best solution. In AILLA-F, the list size is given as a parameter to
reduce its user-dependency instead of using a constant value that directly affects the threshold value.
Another critical component of AILLA-F is the iteration limit. It postpones the diversification decision
by checking a fixed number of neighbouring solutions (k) before accepting a worsening one. When no
new best solution is found, it is assumed that it is unlikely to be found during the search process in

Udine, Italy, July 25–28, 2011



MIC 2011: The IX Metaheuristics International Conference S1-30–5

Algorithm 1: AILLA-F move acceptance
Input: i = 1,K ≥ k ≥ 0, l > 0; k = 5,K = 125; l = 10
for i=0 to l-1 do bestlist(i) = f(Sinitial)

1 if adapt iterations ≥ K then
2 if i < l− 1 then
3 i++

end
end

4 if f(S′) < f(S) then
5 S ← S′

6 w iterations = 0
7 if f(S′) < f(Sb) then
8 i = 1
9 Sb ← S′

10 w iterations = adapt iterations = 0
11 bestlist.remove(last)
12 bestlist.add(0, f(Sb))

end
13 else if f(S′) = f(S) then
14 S ← S′

15 else
16 w iterations++
17 adapt iterations++
18 if w iterations ≥ k andf(S′) ≤ bestlist(i) then
19 S ← S′ andw iterations = 0

end
end

progress. Then, a worsening solution is accepted based on the current threshold value. Moreover, if the
employed threshold value is insufficient to discover new best solutions after K iterations, a larger value
from the list is used as the threshold value. These threshold changes continue until the largest value
in the list is being used or a new best solution is found. The pseudocode ofAILLA-F is presented in
Algorithm 1.S denotes the current solution,S′ is the new solution generated after the selected heuristic
is applied andSb refers to the best solution found. The functionf shows the quality of the given solution.
w iterations is the number of consecutively visited worsening solutions.adapt iterations is a counter
to decide whether the threshold level is increased.

Algorithm 2: Simulated annealing move acceptance
1 if f(S′) ≤ f(S) then
2 S ← S′

3 else if rand(0, 1) ≤ exp

[

−

(

f(S′)− f(S)
)

/(tremaining/ttotal)

]

then

4 S ← S′

end

Algorithm 3: Great deluge move acceptance
1 if f(S′) ≤ f(S) then
2 S ← S′

3 else if f(S′) ≤ f(Sinitial)× (tremaining/ttotal) then
4 S ← S′

end

Hyper-heuristics using the same selection mechanism with four other move acceptance mechanisms
were used for comparison. These mechanisms are simulated annealing (SA), great deluge (GD), late
acceptance (LATE) [10] and improving or equal (IE). IE accepts onlyimproving and equal quality solu-
tions. The rest of the hyper-heuristics also use IE. In addition, they may accept worsening solutions based
on some time related threshold values, decreasing in time like SA and GD, or usinggathered historical
data during the run like LATE. The pseudocode of these move acceptancemechanisms are presented
in Algorithm 2, Algorithm 3 and Algorithm 4 respectively. Regarding the SA and GD pseudocodes,
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Algorithm 4: Late acceptance
Input: listsize = 500, accinx = 0
for i=0 to listsize − 1dolist(i) = f(Sinitial)

1 if f(S′) ≤ f(S) then
2 S ← S′

3 list.exchange(accinx, f(S
′))

4 accinx ++

5 else if f(S′) ≤ list.get(accinx) then
6 S ← S′

7 list.exchange(accinx, f(S
′))

8 accinx ++

9 else
10 list.exchange(accinx, (listmin + f(S))/2)
11 accinx ++

end
12 if accinx = listsize then
13 accinx = 0

end

tremaining refers to the remaining time andttotal shows the total execution time. In the pseudocode of
LATE, list.exchange(i, val) function exchanges the list value located at indexi with a given value,val.

3.1 Initial solution

An initial solution is constructed at random. The process begins by sorting the orders based on their
earliest start time in an increasing manner. While considering the orders according to this sorting, vehi-
cles are randomly selected. If this vehicle is not assigned for a delivery yet, a starting station is selected.
According to the required travelling time to the order’s location and allowed transfer time limit, the max-
imum amount of concrete is determined. Using these random selections, new deliveries were introduced
until all the requested concrete amount of the order is satisfied. The same procedure is repeated for the
subsequent orders.

3.2 Low-level heuristics

For the RMC problem, 9 low-level heuristics were implemented. After applying aselected heuristic, a
method to keep the resulting solution feasible is executed. This method simply reassigns time informa-
tion whilst respectingTmax constraint and updates the number of deliveries if required.

• LLH1: change return station of a vehicle that is responsible for a randomly selected delivery

• LLH2: change vehicle of a randomly selected delivery

• LLH3: ruin all the deliveries of an order and recreate them from scratch

• LLH4: change the position of an order among the sequence of all orders

• LLH5: move a delivery between deliveries belonging to an order

• LLH6: change the amount to deliver for a randomly selected delivery

• LLH7: change loading station for a randomly selected delivery

• LLH8: swap two vehicles between two randomly selected deliveries belonging to a randomly
selected order

• LLH9: swap two vehicles between two randomly selected deliveries belonging to a two randomly
selected orders
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4 Experiments

The group of hyper-heuristics (SR-AILLA-F, SR-SA, SR-GD, SR-LATE, SR-IE) were applied 10-times
to the constructed initial solutions belonging to 26 real-world RMC problem instances (Table 1) provided
by ICORDA NV1. The total execution time was limited to 10 minutes for each run. The best two hyper-
heuristics were additionally tested with 1 hour of execution time. The experimentswere carried out using
a Pentium Core 2 Duo 3 GHz PC with 3.23 GB memory.

Instances # orders Amount(m3) # vehicles Instances # orders Amount(m3) # vehicles
p2011-01-10 6 80.75 28 p2011-02-01 18 299.85 28
p2011-01-11 17 598.75 34 p2011-02-02 16 333.25 28
p2011-01-12 26 748.25 34 p2011-02-03 19 422 28
p2011-01-13 15 581.95 31 p2011-02-07 17 317.25 28
p2011-01-14 21 474.95 32 p2011-02-08 14 233.5 31
p2011-01-18 17 395.25 28 p2011-02-09 17 588.25 28
p2011-01-19 18 436 28 p2011-02-10 16 507 28
p2011-01-20 14 309.25 28 p2011-02-11 19 651.25 30
p2011-01-21 17 308 28 p2011-02-14 15 233.95 32
p2011-01-25 13 280.25 28 p2011-02-15 24 1195.7 28
p2011-01-26 15 389.8 28 p2011-02-16 20 554.6 28
p2011-01-27 19 610.25 28 p2011-02-18 24 796.5 28
p2011-01-28 19 546.5 29 p2011-02-21 19 747.25 30

Table 1: The details of the RMC instances

4.1 Computational results

Table 2 shows the average fitness values of each hyper-heuristic on thetested instances. The hyper-
heuristics are ranked as SR-AILLA-F, SR-LATE, SR-SA, SR-IE andSR-GD from the best to the worst
based on their average performances. The table also clearly indicates that the two best hyper-heuristics
use list-based threshold accepting strategies. In its turn this shows that the study of the hyper-heuristics’
past behaviour can be helpful in pronouncing further judgements on diversification.

Instances
SR-AILLA-F SR-LATE SR-SA SR-GD SR-IE
AVG STD AVG STD AVG STD AVG STD AVG STD

p2011-01-10 3783.85 0.52 3829.15 145.50 3874.75 192.90 3828.75 2105.76 3837.65 696.88
p2011-01-11 42308.55 517.84 42547.42 818.30 43376.02 1092.83 44097.92 53050.34 43054.42 49643.52
p2011-01-12 298283.35 15846.13 366837.02 37818.51 270496.22 23940.32 359933.61 23268.58 314874.22 29613.89
p2011-01-13 33431.68 1549.30 33787.85 1583.88 34073.59 1610.74 36643.53 3912.76 34654.69 2065.12
p2011-01-14 30653.32 1689.16 30185.73 1538.58 30804.45 2017.61 41820.34 3641.37 33580.48 3360.66
p2011-01-18 68635.28 3094.89 69583.50 2193.09 73818.34 3906.36 78536.53 138634.46 74115.77 4140.76
p2011-01-19 95806.79 14695.65 110216.07 6790.16 102069.11 9294.39 132954.89 8088.98 102966.30 8758.61
p2011-01-20 94802.50 4333.84 90405.56 5608.52 100130.03 8602.82 110974.18 4917.97 109269.06 11244.14
p2011-01-21 62751.37 1174.61 62518.80 1751.25 64076.47 2338.30 64976.16 1120.64 64783.31 3250.76
p2011-01-25 50591.05 2643.41 48687.56 1758.78 52140.23 1826.53 55967.50 112545.13 55205.67 2969.21
p2011-01-26 71658.31 2093.15 72209.63 1559.61 76691.32 2836.23 81691.65 94452.10 79853.11 112677.12
p2011-01-27 78696.14 4434.09 80972.00 1846.89 87373.60 9548.44 91418.55 3888.31 83162.08 2819.35
p2011-01-28 40009.56 1879.02 40461.41 1461.14 44268.95 2200.93 55732.31 4748.82 46977.88 3606.37
p2011-02-01 38790.96 1718.79 38967.25 1736.38 41940.66 2908.43 49864.53 2050.40 45459.96 3542.27
p2011-02-02 24692.87 550.05 24992.28 518.33 25171.48 508.80 24943.45 15600.81 25693.68 18044.14
p2011-02-03 65749.17 1745.81 65942.09 1493.24 67370.82 2444.06 73484.04 2072.34 70201.96 5123.40
p2011-02-07 34654.58 1010.02 34700.01 925.78 35017.62 1516.60 37427.25 89373.26 36707.73 78029.03
p2011-02-08 18553.10 87.29 18569.00 197.88 18676.10 316.24 18677.68 148.08 18855.70 288.38
p2011-02-09 39427.22 1179.49 39068.37 1194.40 40534.73 1763.98 39543.35 1266.16 39884.30 1156.13
p2011-02-10 66574.60 70.22 67437.70 779.76 66513.10 41.43 69441.40 23206.06 66550.80 24954.80
p2011-02-11 51853.51 3449.69 53825.82 2972.18 55322.35 4904.08 67621.69 3337.41 58926.42 4519.54
p2011-02-14 59601.56 2950.68 60426.73 1718.60 66759.76 9968.05 67664.46 2824.46 69954.17 8374.82
p2011-02-15 591919.15 26627.67 660075.33 22085.79 592718.33 41801.29 627683.22 30100.45 596502.97 48846.38
p2011-02-16 104711.29 3967.35 110962.91 4177.45 111031.32 7179.41 123034.98 12367.71 119981.34 9015.92
p2011-02-18 365809.87 61779.94 357262.07 11521.33 428190.88 38843.64 375636.81 419522.25 379902.35 578378.08
p2011-02-21 104091.79 15574.68 92152.51 3596.63 106756.11 12814.48 121561.69 11152.39 115964.24 10295.44

Table 2: Average fitness values with standard deviations for each hyper-heuristic

In Table 3, the top two hyper-heuristics from the 10-minutes experiments aretested with 1 hour of
execution time. The test results indicate that for longer execution time, SR-AILLA-F still performs better
than SR-LATE.

In Figure 3(a), changes on the best fitness values for the tested hyper-heuristics are illustrated. In
these results, SR-AILLA-F, SR-SA and SR-IE improve the initial solution very fast in the beginning of
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Instances
SR-AILLA-F SR-LATE
AVG STD AVG STD

p2011-01-10 3783.75 0.85 3782.55 0.48
p2011-01-11 41457.12 299.84 41325.45 372.24
p2011-01-12 217455.99 20469.46 233072.96 18007.72
p2011-01-13 31557.60 1904.81 32171.19 2152.41
p2011-01-14 27715.36 2100.99 28106.35 2280.85
p2011-01-18 64992.81 1510.02 66909.32 719.75
p2011-01-19 56455.19 3325.83 59504.30 2387.96
p2011-01-20 75576.76 3438.29 83699.83 5580.40
p2011-01-21 60749.08 443.67 60806.60 902.09
p2011-01-25 47507.55 1864.27 48911.85 2855.42
p2011-01-26 68304.51 1781.66 70836.96 1576.90
p2011-01-27 71668.21 1851.01 73507.16 1801.41
p2011-01-28 34126.37 1144.11 35419.53 2063.34
p2011-02-01 35766.23 647.63 36733.65 1456.72
p2011-02-02 24418.18 140.39 24588.97 320.00
p2011-02-03 61222.13 1524.57 63064.78 2312.47
p2011-02-07 33841.77 455.49 33766.98 498.59
p2011-02-08 18463.90 47.64 18467.70 46.08
p2011-02-09 37987.95 472.21 37635.25 209.55
p2011-02-10 66541.90 57.23 67450.50 792.42
p2011-02-11 49601.22 553.27 50239.25 1472.44
p2011-02-14 54578.45 1187.21 56709.26 1558.92
p2011-02-15 500672.21 14764.59 480298.53 7223.04
p2011-02-16 91456.18 1608.41 92431.51 2230.97
p2011-02-18 300698.23 33498.32 279121.50 4453.98
p2011-02-21 68985.05 5659.49 72281.96 6161.38

Table 3: Average fitness values with standard deviations for the top two hyper-heuristics with 1 hour of
execution time

the search. SR-LATE is relatively slower. For SR-GD, the improvement process lags behind compared
to the other methods, but it consistently improves the solution.

During the further iterations, the performance of the hyper-heuristics changes. SR-LATE and SR-GD
catch the other hyper-heuristics. SR-IE almost stops improving after first200 seconds due to the lack of
an effective diversification component.

Figure 3(b) presents the heuristics that found new best solutions duringthe run for a particular in-
stance. From the figure, it can be deduced that each heuristic contributes to the improvement process.
However, their effect might change for different parts of the searchspace. Therefore, employing an
intelligent selection mechanism can provide further improvements.
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Figure 3: (a) The best fitness changes during the run on p2011-01-18 (run 7), (b) The heuristics that
found new best solutions during the run on p2011-02-15 (run 5)

5 Conclusion

Hyper-heuristics are effective management strategies aiming to solve various problems in a fast and easy
way. Therefore, different hyper-heuristics have been developedand applied to solve distinct problems.
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In this study, we employed a hyper-heuristic using simple random as a selection mechanism and a new
move acceptance strategy, i.e. adaptive iteration limited list-based threshold accepting with a fixed limit.
For the purpose of comparison, the proposed hyper-heuristic togetherwith four other hyper-heuristics
from the literature were applied to a set of ready-mixed concrete deliveryproblem instances. These
four approaches consist of the same selection mechanism with late acceptance, simulated annealing,
great deluge, improving equal move acceptance mechanisms. The experimental results showed that the
proposed approach performs better than the other hyper-heuristics based on their performance over the
target instances. Furthermore, extended execution time limit did not change the performance gap.

In the future, intelligent collaborations between hyper-heuristic componentswill be investigated.
For the selection process, a learning based approach will be designed and combined with the proposed
acceptance mechanism. In addition, the user-dependency of the required parameters for the acceptance
strategy will be reduced. The generality and robustness of the hyper-heuristic will be examined via
extensive experiments additionally on other combinatorial optimisation problems.

References

[1] L. Asbach, U. Dorndorf, and E. Pesch. Analysis, modeling and solution of the concrete delivery
problem.European Journal of Operational Research, 193(3):820–835, 2009.

[2] R. Bai and G. Kendall. An investigation of automated planograms using a simulated annealing
based hyper-heuristics. InMeta-heuristics: Progress as Real Problem Solvers, Selected Papers
from the 5th MIC, pages 87–108, 2005.

[3] E.K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Handbook of Meta-
Heuristics, chapter Hyper-Heuristics: An Emerging Direction in Modern Search Technology, pages
457–474. Kluwer Academic Publishers, 2003.

[4] E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu.A survey of hyper-heuristics.
Cs technical report no: Nottcs-tr-sub-0906241418-2747, Univeristy of Nottingham, 2009.

[5] E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J.R. Woodward. A classification of
hyper-heuristic approaches.Handbook of Metaheuristics, pages 449–468, 2010.

[6] E.K. Burke, M.R. Hyde, and G. Kendall. Evolving bin packing heuristics with genetic program-
ming. InProceedings of the 9th Parallel Problem Solving from Nature (PPSN’IX), volume 4193 of
LNCS, pages 860–869, 2006.

[7] E.K. Burke, G. Kendall, M. Misir, and E. Ozcan. Monte carlo hyper-heuristics for examination
timetabling.Annals of Operations Research, pages 1–18, 2010. 10.1007/s10479-010-0782-2.

[8] E.K. Burke, B. MacCarthy, S. Petrovic, and R. Qu. Knowledge discovery in a hyperheuristic using
case-based reasoning on course timetabling. InProceedings of the 4th International Conference
on the Practice and Theory of Automated Timetabling (PATAT’02), pages 276–286, Gent, Belgium,
August 21–23 2002.

[9] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling a sales summit.
In PATAT ’00: Selected papers from the Third International Conference onPractice and Theory of
Automated Timetabling III, pages 176–190, London, UK, 2001. Springer-Verlag.

[10] P. Demeester, P. De Causmaecker, and G. Vanden Berghe. A general approach for exam timetabling:
a real-world and a benchmark case. InProceedings of the 8th International Conference on the
Practice and Theory of Automated Timetabling (PATAT’10), Belfast, Northern Ireland, August 10–
13 2010.

Udine, Italy, July 25–28, 2011



S1-30–10 MIC 2011: The IX Metaheuristics International Conference

[11] C.W. Feng, T.M. Cheng, and H.T. Wu. Optimizing the schedule of dispatching RMC trucks through
genetic algorithms.Automation in Construction, 13(3):327–340, 2004.

[12] L.D. Graham, D.R. Forbes, and S.D. Smith. Modeling the ready mixed concrete delivery system
with neural networks.Automation in Construction, 15(5):656–663, 2006.

[13] G. Kendall and N.M. Hussin. An investigation of a tabu-search-based hyper-heuristic for exam-
ination timetabling. InMultidisciplinary scheduling: theory and applications: 1st International
Conference, MISTA’03: Nottingham, UK, 13-15 August 2003: selected papers, page 309. Springer
Verlag, 2005.

[14] G. Kendall and M. Mohamad. Channel assignment optimisation using a hyper-heuristic. InPro-
ceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS’04), pages
790–795, Singapore, December 1–3 2004.

[15] D.S. Lee, V.S. Vassiliadis, and J.M. Park. List-based threshold-accepting algorithm for zero-
wait scheduling of multiproduct batch plants.Industrial & Engineering Chemistry Research,
41(25):6579–6588, 2002.

[16] J.G. Marn-Blzquez and S. Schulenburg. A hyper-heuristic framework with xcs: Learning to create
novel problem-solving algorithms constructed from simpler algorithmic ingredients. In IWLCS,
volume 4399 ofLNCS, pages 193–218, 2007.

[17] N.F. Matsatsinis. Towards a decision support system for the readyconcrete distribution system: A
case of a Greek company.European Journal of Operational Research, 152(2):487–499, 2004.

[18] M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe. Hyper-heuristics with a dy-
namic heuristic set for the home care scheduling problem. InProceedings of the IEEE Congress on
Evolutionary Computation (CEC’10), pages 2875–2882, Barcelona, Spain, July 18–23 2010.

[19] M. Misir, T. Wauters, K. Verbeeck, and G. Vanden Berghe. A new learning hyper-heuristic for the
traveling tournament problem. InProceedings of the 8th Metaheuristic International Conference
(MIC’09), Hamburg, Germany, July 13–16 2009.

[20] D. Naso, M. Surico, B. Turchiano, and U. Kaymak. Just-in-time production and delivery in supply
chains: a hybrid evolutionary approach. InSystems, Man and Cybernetics, 2004 IEEE International
Conference on, volume 2, pages 1932–1937. IEEE, 2005.

[21] D. Naso, M. Surico, B. Turchiano, and U. Kaymak. Genetic algorithms for supply-chain schedul-
ing: A case study in the distribution of ready-mixed concrete.European Journal of Operational
Research, 177(3):2069–2099, 2007.

[22] E. Ozcan, B. Bilgin, and E.E. Korkmaz. A comprehensive analysis of hyper-heuristics.Intelligent
Data Analysis, 12(1):3–23, 2008.

[23] E. Ozcan, Y. Bykov, M. Birben, and E.K. Burke. Examination timetabling using late acceptance
hyper-heuristics. InProceedings of Congress on Evolutionary Computation (CEC’09), 2009.

[24] E. Ozcan, M. Misir, G. Ochoa, and E.K. Burke. A reinforcement learning - great-deluge hyper-
heuristic for examination timetabling.International Journal of Applied Metaheuristic Computing,
1(1):39–59, 2010.

[25] V. Schmid, K.F. Doerner, R.F. Hartl, and J.J. Salazar-González. Hybridization of very large neigh-
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