MIC 2011: The IX Metaheuristics International Conference S1-30-1

A selection hyper-heuristic for scheduling deliveries of
ready-mixed concrete

Mustafa Misir+2, Wim Vancroonenburg?, Katja Verbeeck?, Greet Vanden Berghé

1 CODeS research group, KAHO Sint-Lieven
Gebroeders De Smetstraat 1, 9000 Gent, Belgium
{mustafa.misir, wim.vancroonenburg, katja.verbeeckegvandenbergh&@kahosl.be

2 CODeS research group, Department of Computer Sciencel &uen
Etienne Sabbelaan 53, 8500, Kortrijk, Belgium

Abstract

The existence of several solution strategies for diffese@irch and optimisation problems moti-
vates the use of these strategies in a collaborative waye€ltmlaborative approaches are considered
in the context of hybridisation. Hyper-heuristics providgridisation by performing search on mul-
tiple low-level heuristics for finding efficient solutions & problem-independent manner. In this
study, a suite of simple moves is employed to solve real wiodthnces of the ready-mixed concrete
delivery problem. These basic moves are used under a ssidutper-heuristic that makes use of
the new adaptive iteration limited list-based thresholtepting with a fixed limit and four others for
comparison. These hyper-heuristics are tested on a sedlofvogld ready-mixed concrete delivery
problem instances and a performance analysis is carried out

1 Introduction

The ready-mix concrete delivery problem is a complex vehicle routing emeldsiling problem encoun-
tered in the construction sector. The problem considers schedulingidedivof ready-mix concrete
(RMC) from central production centres to customers’ constructionsyarsing a large heterogeneous
fleet of trucks. Due to the perishable nature of RMC, these deliveries Imuserformed under strict
time constraints as the RMC may lose its quality (or even solidify) during trahsporthermore, cus-
tomers typically require a large amount of RMC that cannot be delivereddiygle truck, necessitating
multiple truck deliveries. To guarantee the quality of the concrete strudtisémportant to avoid large
time gaps between these deliveries as they are handled sequentially atract@n yard.

The concrete delivery problem represents main characteristics of tluldwling and routing prob-
lems. It has been looked at in a limited number of studies. A decision supstens was developed to
solve the ready-mixed concrete delivery problem consisting of routinguimping vehicles and schedul-
ing of concrete delivery vehicles [17]. In [11], genetic algorithms wesed to determine the dispatching
sequence of the trucks and a simulation technique was used for detectingfmeaition regarding each
operation. Different neural network models based on feed-foraaddEIman recurrent networks were
proposed in [12]. The problem was decomposed into the assignmerteybdo the production centres
and the assignment of trucks in [20, 21]. A two-phase approach ingpgemetic algorithms and a con-
struction heuristic was designed. A mixed-integer programming model ass\ellogal search strategy
capable of solving large real-world problem instances were studied inlfil]26], the problem was
modelled as an integer multicommodity network flow problem while at the same time arnvienpeat
strategy using variable neighbourhood search was studied. In [Bghral approach involving variable
neighbourhood search and mixed integer linear programming supporteadry large neighbourhood
search strategy was proposed.

Hyper-heuristics are easy-to-use high level search mechanisms aimivlgeaay search and opti-
misation problem. They are expressed as problem-independent seaithnisens designed to manage
a number of low-level search strategies [3]. The underlying motivation iséothe strength of each
utilised search strategy. This approach is expected to provide perfoenraprovement over the use of
each method separately. Together with this high-level search apptbagtroblem-independent nature
of hyper-heuristics is helpful to elevate their generality level. In the litegatseveral hyper-heuristics
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have been developed and applied to various problems [4]. In [5], thgser-heuristic methods were
classified aselection hyper-heuristicand generation hyper-heuristicsSelection hyper-heuristics are
composed from certain components to manage a set of low-level heuridtiese components involves
some learning devices such as choice function [9, 22], reinforcemamiing [19, 24], case-based rea-
soning [8] and learning classifier systems [16] as well some meta-heutikédabu search [13], sim-
ulated annealing [2, 7], late acceptance [23] and great deluge [1dher@tion hyper-heuristics focus
on generating these low-level heuristics. Genetic programming [6] is thdywided option for such
strategies.

In the present study, the ready-mixed concrete delivery problenistiorgsof a heterogeneous fleet of
vehicles has been investigated. For solving this problem, a new hypastieinvolving an adaptive list-
based acceptance mechanism is proposed. Besides the new hypsticheugroup of hyper-heuristics
composed of certain methods from the literature has been experimented withleemnof real world
problem instances and a performance analysis has been carried the. ftlowing section, the RMC
problem will be explained in further detail. Then, in Section 3, a discusdimutaselection hyper-
heuristics will be carried out. In the same section, the details of the prophgped-heuristic will also be
presented. In Section 4, the experimental results will be analysed. Tlsedi®n contains a conclusion
and the discussion of possible future research.

2 Theready-mixed concrete delivery problem

The ready-mixed concrete (RMC) delivery problem considers a setdafrs for RMC that need to be
met by delivering concrete from a set of production centres, usingohgdovehicles. The dilemma
here is to find a delivery schedule that completes all orders and minimisgs deldeliveries, lags
between deliveries, wasted RMC and transportation time. Furthermotedelieery needs to respect
some constraints related to the perishable nature of the RMC. Figure 1 shosmxample of a simple
RMC delivery problem. In what follows, we describe the three main eleméite seal world problem
that is subject of this paper.

adelivery
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Figure 1: A RMC example

2.1 Production centres

Production centres are the locations where RMC is loaded into the truclkedingpRMC requires a
certain amount of time (constant), which is specific to the equipment used@iithection centre.
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2.2 Vehicles

Vehicles (trucks) are the main carriers of RMC that deliver the RMC abousrs’ construction yards.
They are characterised by their volume, their pumpline length and their véyyee They can pick up
concrete from any of the production centres. They are assumed tesenpat the first production centre.
Making a delivery follows the following sequence: 1) In this real-worldiggem, vehicles always take
an amount of concrete that is equal to their capacity. Loading the comerpiges a certain amount of
time that is specific to the production centre, as explained in Section 2.1. Fadit® only one vehicle
can perform loading operations at a production centre at any time, sadpagerations should therefore
not overlap. 2) Drive towards the construction yard. 3) Wait at thestroation yard until the unloading
can be set up. 4) Set up equipment at the construction yard. This talkeaaunt of time specific to
the construction yard. This setup may overlap with a delivery already igress. 5) Unload the RMC
at the discharge rate specified by the customer. Only one vehicle camrpenfloading at any time, so
unloading operations may not overlap. 6) Return to a production cemttiefmext delivery.

Only a limited amount of time may pass between loading RMC at a production cextrenébading
it at a construction yard, due to the perishable nature of the RMC. Tdrerefach delivery must be
finished with unloading after a specified amount of tithg,... This possibly limits the amount of RMC
that can be delivered by a vehicle, depending on the discharge ratatuhe construction yard.

2.3 Ordes

An ordero is described by its order quantity and a required discharge ratg at which the concrete

is poured. This discharge rate determines the unloading time for a delivelgading a quantity at a
discharge raté takesq/d time units. Each order has an earliest start time, before which no unloading
operations can be performed. Some required properties for the gelighicles can be specified per
order: 1) a customer can require a pumpline of a certain length for pocoingrete 2) certain vehicle
types are prohibited by the customer. For example, some vehicle types migh g to enter a
customer’s construction yard. Any vehicle matching the required propdurean order can deliver
concrete to that customer.

2.4 Objective function

Symbol Description

o Order

d Delivery

O Set of all orders

D Set of all deliveries

Do Set of all deliveries for ordes

Co Requested concrete amount for order
Ca,o Capacity of the truck handling delivery/for ordero
Wo Total waste for ordeo (3- ;. p, Ca,o — Co)
1% Set of all trucks

Lo Lateness of the first delivery for order
tiag,d Time lag for deliveryd

(time gap between unloading end time of previous delivery arldading start time of delivery)
psOK, q is deliveryd serviced from the preferred station for ordefe [0, 1])

Ty Total travelling time of a truck
o Weight for constraint
Minimise:

fobjecti'ue - ZOGO (041 : Lo + QQWO + ag ZdGDO pSOKo,d + ay ZdeDo tlag,d) + a5 Zyey Tv

The RMC problem considered in this paper aims at minimising the following obgetirction
consisting of:

e the per-order lateness of tfiest delivery, weighted byy,
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the per-order wasted concrete, weighteday i.e. equal to the total delivered volume of RMC
minus the ordered quantity,

for each delivery, whether the RMC has been loaded at the preferoedction centreys,

the per-order lag between subsequent deliveries, weighted by

the total travelling time, weighted hys.

The weights of the objective function have been set after discussion vétlcdmpany: a; =
10,50 = 10,3 = 1,4 = 20,5 = 20. In addition, the maximum time for completing a delivery
(Trnaz) is set to 100 minutes.

3 Sdlection hyper-heuristics

A traditional selection hyper-heuristic is composed of two sub-mechanisamsIgheuristic selection
andmove acceptance\ heuristic selection mechanism selects a low-level heuristic at each desiem
Using the selected heuristic, a new partial/complete solution is constructed/vikited, the quality of
the resulting solution is examined relying on certain metrics by a move accepteut@nism. After
that, it is decided whether to accept or reject the new solution. Figure 2rétrates a single point
search selection hyper-heuristic framework.

ot continue until the termination criteria are met
Hyper-heuristic

no

Heuristic MO\{e ' decision for the new solution

1
| 1
| selection } accep accept
! 1

roblem-independent data transijtion
e.g. fitness value of the solution)

yes

appriy theI LLH
to the solution
S—S§ S=5—

selected LLH

low-level heuristic set

Figure 2: A traditional single-point search selection hyper-heuristic

For solving the RMC problem, a hyper-heuristic using the simple randomg&RBgtion mechanism
[9] and a new move acceptance strategy, namely adaptive iteration limitedded-tareshold accepting
with a fixed limit (AILLA-F) was constructed. SR randomly chooses heusstied AILLA-F accepts
solutions which are visited by the selected heuristics using a list of previdowshd best solutions
(bestyist). The literature reports on similar strategies maintaining the history of fitndgesvas a list
such as list-based threshold accepting [15] and late acceptance [23].

AILLA-F maintains a fixed-sized(] list of previously visited new best solutions. Thus, whenever
a new best solution is found, the oldest element in the list is removed anduheahee is added the
beginning of the list. The underlying idea is to use proper threshold vaaredifferent regions of
the search space. An earlier version of AILLA-F [18] consideredrastiold level determined by a
constant value and by the current best solution. In AILLA-F, the list $izgiven as a parameter to
reduce its user-dependency instead of using a constant value ttatydéiects the threshold value.
Another critical component of AILLA-F is the iteration limit. It postpones theedsification decision
by checking a fixed number of neighbouring solutioh}lfefore accepting a worsening one. When no
new best solution is found, it is assumed that it is unlikely to be found duriagéarch process in
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Algorithm 1. AILLA-F move acceptance
Input:t =1, K > k>0,l >0;k=5K =125l =10
for i=0 to I-1 do besty;s¢ (Z) = f(Sinitial)

1 if adapt_iterations > K then

2 ifi <l—1then
3 | i++
end
end
4 if f(S") < f(S) then
5 S+ 9’
6 w-iterations = 0
7 if £(S”) < f(Sp) then
8 1=1
9 Sb «— 5
10 w_iterations = adapt_iterations = 0
1 besty;st.remove(last)
12 besty;st-add(0, f(Sp))
end
13 dseif £(S”) = f(S) then
1 | S« 9
15 else
16 w-iterations + +
17 adapt_iterations + +
18 if w_iterations > k and f(S") < best;s¢ (i) then
19 ‘ S + S’ andw_iterations = 0
end

end

progress. Then, a worsening solution is accepted based on thet¢bresshold value. Moreover, if the
employed threshold value is insufficient to discover new best solutions/fteerations, a larger value
from the list is used as the threshold value. These threshold changisueonntil the largest value

in the list is being used or a new best solution is found. The pseudocoliiloA-F is presented in
Algorithm 1. .S denotes the current solutioff, is the new solution generated after the selected heuristic
is applied andb}, refers to the best solution found. The functibshows the quality of the given solution.
w_iterations is the number of consecutively visited worsening solutieflpt _iterations is a counter

to decide whether the threshold level is increased.

Algorithm 2: Simulated annealing move acceptance
1 if £(S') < £(S) then
2 | S« 9
3 eseif rand(O, 1) S exp |:_ (f(sl) - f(S))/(tTema,ining/ttotal) then
4 | Ses
end

Algorithm 3: Great deluge move acceptance

if £(5") < £(S) then
S« S
elseif f(S,) S f(Sinitial) X (tremaining/ttotal) then
| S« 5
end

W NP

Hyper-heuristics using the same selection mechanism with four other mosetance mechanisms
were used for comparison. These mechanisms are simulated annealing(&#)deluge (GD), late
acceptance (LATE) [10] and improving or equal (IE). IE accepts anlyroving and equal quality solu-
tions. The rest of the hyper-heuristics also use IE. In addition, they owgpaworsening solutions based
on some time related threshold values, decreasing in time like SA and GD, orgaghmyed historical
data during the run like LATE. The pseudocode of these move acceptaaceanisms are presented
in Algorithm 2, Algorithm 3 and Algorithm 4 respectively. Regarding the SAl &D pseudocodes,
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Algorithm 4: Late acceptance
Input: lists;ze = 500, accings =0
for i=0 to lists;,e — 1dolist(i) = f(S;nitial)
if £(5") < f(S) then
S+ S
list.exchange(accinz, f(S'))
acCing + +
seif f£(S’) < list.get(acciny) then
S+ 9
list.exchange(accinz, f(S'))
acCing + +

© 0N O U A WN P
[0}

else
10 list.exchange(accing, (listmin + f(5))/2)
11 acCing + +
end
12 if accine = listsize then
13 ‘ acCinz =0
end

tremaining r€fers to the remaining time artg,,; shows the total execution time. In the pseudocode of
LATE, list.exchange(i, val) function exchanges the list value located at infleith a given valueypal.
3.1 Initial solution

An initial solution is constructed at random. The process begins by sortingrtters based on their
earliest start time in an increasing manner. While considering the ordersdatg to this sorting, vehi-
cles are randomly selected. If this vehicle is not assigned for a delietyastarting station is selected.
According to the required travelling time to the order’s location and allowedfeatime limit, the max-
imum amount of concrete is determined. Using these random selectionsefiesvids were introduced
until all the requested concrete amount of the order is satisfied. The sagexipre is repeated for the
subsequent orders.

3.2 Low-level heuristics

For the RMC problem, 9 low-level heuristics were implemented. After applyisglected heuristic, a
method to keep the resulting solution feasible is executed. This method simpigreasme informa-
tion whilst respectind’,,.. constraint and updates the number of deliveries if required.

e LLHy: change return station of a vehicle that is responsible for a randomiytegléelivery
e LLH>: change vehicle of a randomly selected delivery

e L L Hj: ruin all the deliveries of an order and recreate them from scratch

e LLH,: change the position of an order among the sequence of all orders

e [ LHs5: move a delivery between deliveries belonging to an order

e [ LHg: change the amount to deliver for a randomly selected delivery

e L L H;: change loading station for a randomly selected delivery

e LLHg: swap two vehicles between two randomly selected deliveries belongingaondamly
selected order

e LLHy: swap two vehicles between two randomly selected deliveries belonging ramgomly
selected orders
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4 Experiments

The group of hyper-heuristics (SR-AILLA-F, SR-SA, SR-GD, SRIE, SR-IE) were applied 10-times
to the constructed initial solutions belonging to 26 real-world RMC problemrigst&(Table 1) provided
by ICORDA NV!. The total execution time was limited to 10 minutes for each run. The best twa-hype
heuristics were additionally tested with 1 hour of execution time. The experiwenéscarried out using

a Pentium Core 2 Duo 3 GHz PC with 3.23 GB memory.

Instances #orders  Amount(m®) # vehicles Instances #orders  Amount(m®) #vehicles

p2011-01-10 6 80.75 28 p2011-02-01 18 299.85 28
p2011-01-11 17 598.75 34 p2011-02-02 16 333.25 28
p2011-01-12 26 748.25 34 p2011-02-03 19 422 28
p2011-01-13 15 581.95 31 p2011-02-07 17 317.25 28
p2011-01-14 21 474.95 32 p2011-02-08 14 233.5 31
p2011-01-18 17 395.25 28 p2011-02-09 17 588.25 28
p2011-01-19 18 436 28 p2011-02-10 16 507 28
p2011-01-20 14 309.25 28 p2011-02-11 19 651.25 30
p2011-01-21 17 308 28 || p2011-02-14 15 233.95 32
p2011-01-25 13 280.25 28 || p2011-02-15 24 1195.7 28
p2011-01-26 15 389.8 28 || p2011-02-16 20 554.6 28
p2011-01-27 19 610.25 28 || p2011-02-18 24 796.5 28
p2011-01-28 19 546.5 29 || p2011-02-21 19 747.25 30

Table 1: The details of the RMC instances

4.1 Computational results

Table 2 shows the average fitness values of each hyper-heuristic éesthd instances. The hyper-
heuristics are ranked as SR-AILLA-F, SR-LATE, SR-SA, SR-IE &RIGD from the best to the worst
based on their average performances. The table also clearly indicatésethao best hyper-heuristics

use list-based threshold accepting strategies. In its turn this shows thatdlie@sthe hyper-heuristics’
past behaviour can be helpful in pronouncing further judgementsvensification.

|ngtances SR-AILLA-F SR-LATE SR-SA SR-GD SR-IE
AVG STD AVG STD AVG STD AVG STD AVG STD

p2011-01-10 3783.85 0.52 3829.15 145.50 3874.75 192.90 3828.75 2105.76 3837.65 696.88
p2011-01-11 42308.55 517.84 42547.42 818.30| 43376.02 1092.83| 44097.92 53050.34| 43054.42 49643.52
p2011-01-12 | 298283.35 15846.13| 366837.02 37818.51| 270496.22 23940.32 | 359933.61 23268.58| 314874.22 29613.89
p2011-01-13 33431.68 1549.30 33787.85 1583.88| 34073.59 1610.74| 36643.53 3912.76| 34654.69 2065.12
p2011-01-14 30653.32 1689.16| 30185.73 1538.58 30804.45 2017.61| 41820.34 3641.37| 33580.48 3360.66
p2011-01-18 68635.28 3094.89 69583.50 2193.09| 73818.34 3906.36| 78536.53 138634.46| 74115.77 4140.76
p2011-01-19 95806.79 14695.65 | 110216.07 6790.16| 102069.11 9294.39| 132954.89 8088.98| 102966.30 8758.61
p2011-01-20 94802.50 4333.84| 90405.56 5608.52 | 100130.03 8602.82| 110974.18 4917.97| 109269.06 11244.14
p2011-01-21 62751.37 1174.61| 62518.80 1751.25 64076.47 2338.30| 64976.16 1120.64| 64783.31 3250.76
p2011-01-25 50591.05 2643.41| 48687.56 1758.78 52140.23 1826.53| 55967.50 112545.13| 55205.67 2969.21
p2011-01-26 71658.31 2093.15 72209.63 1559.61| 76691.32 2836.23| 81691.65 9445210 79853.11 112677.12
p2011-01-27 78696.14 4434.09 80972.00 1846.89| 87373.60 9548.44| 91418.55 3888.31| 83162.08 2819.35
p2011-01-28 40009.56 1879.02 40461.41 1461.14| 44268.95 2200.93| 55732.31 4748.82| 46977.88 3606.37
p2011-02-01 38790.96 1718.79 38967.25 1736.38| 41940.66 2908.43| 49864.53 2050.40| 45459.96 3542.27
p2011-02-02 24692.87 550.05 24992.28 518.33| 25171.48 508.80| 24943.45 15600.81| 25693.68 18044.14
p2011-02-03 65749.17 1745.81 65942.09 1493.24| 67370.82 2444.06| 73484.04 2072.34| 70201.96 5123.40
p2011-02-07 34654.58 1010.02 34700.01 925.78| 35017.62 1516.60| 37427.25 89373.26| 36707.73 78029.03
p2011-02-08 18553.10 87.29 18569.00 197.88| 18676.10 316.24| 18677.68 148.08| 18855.70 288.38
p2011-02-09 39427.22 1179.49| 39068.37 1194.40 40534.73 1763.98| 39543.35 1266.16| 39884.30 1156.13
p2011-02-10 66574.60 70.22| 67437.70 779.76| 66513.10 41.43 69441.40 23206.06| 66550.80 24954.80
p2011-02-11 51853.51 3449.69 53825.82 2972.18| 55322.35 4904.08| 67621.69 3337.41| 58926.42 4519.54
p2011-02-14 59601.56 2950.68 60426.73 1718.60| 66759.76 9968.05| 67664.46 2824.46| 69954.17 8374.82
p2011-02-15 | 591919.15 26627.67 | 660075.33 22085.79| 592718.33 41801.29| 627683.22 30100.45| 596502.97 48846.38
p2011-02-16 | 104711.29 3967.35 | 110962.91 4177.45| 111031.32 7179.41| 123034.98 12367.71| 119981.34 9015.92
p2011-02-18 | 365809.87 61779.94| 357262.07 11521.33 | 428190.88 38843.64| 375636.81 419522.25/ 379902.35 578378.08|
p2011-02-21 | 104091.79 15574.68] 92152.51 3596.63 | 106756.11 12814.48| 121561.69 11152.39] 115964.24 10295.44

Table 2: Average fitness values with standard deviations for each-hgpeistic

In Table 3, the top two hyper-heuristics from the 10-minutes experimentested with 1 hour of
execution time. The test results indicate that for longer execution time, SRAARSstill performs better

than SR-LATE.
In Figure 3(a), changes on the best fitness values for the tested tigyestics are illustrated. In
these results, SR-AILLA-F, SR-SA and SR-IE improve the initial solutiony ¥ast in the beginning of
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SRAILLAF SR-LATE
Instances G STD NG STD

p2011-01-10 | 3783.75 085 37825 0.48

p2011-01-11 | 41457.12 209.84| 4132545 372.24

p2011-01-12 | 21745599  20469.46 | 23307296  18007.72
p2011-01-13 | 3155760  1904.81 | 3217119 215241
p2011-01-14 | 2771536  2100.99 | 28106.35  2280.85
p2011-01-18 | 6499281 151002 | 66909.32 719.75
p2011-01-19 | 5645519  3325.83 | 59504.30  2387.96
p2011-01-20 | 7557676  3438.29 | 83699.83  5580.40
p2011-01-21 | 60749.08 44367 | 60806.60 902.09
p2011-01-25 | 4750755  1864.27 | 48911.85  2855.42
p2011-01-26 | 6830451  1781.66 | 70836.96  1576.90
p2011-01-27 | 7166821 185101 | 73507.16  1801.41
p2011-01-28 | 3412637 114411 | 3541053  2063.34
p2011-02-01 | 35766.23 647.63 | 36733.65  1456.72
p2011-02-02 | 24418.18 14030 | 24588.97 320.00
p2011.02-03 | 6122213 152457 | 6306478 231247
p2011-02-07 | 33841.77 455.49| 33766.98 498.59

p2011-02-08 | 18463.90 47.64 | 18467.70 46.08
p2011-02-00 | 37987.95 472.21| 3763525 200.55

p2011-02-10 |  66541.90 57.23 | 6745050 792.42
p2011-02-11 | 49601.22 553.27 | 50239.25  1472.44
p2011-02-14 | 5457845  1187.21 | 56709.26  1558.92
p2011-02-15 | 500672.21  14764.59| 48029853  7223.04

p2011-02-16 | 9145618  1608.41 | 9243151  2230.97
p2011-02-18 | 300698.23  33498.32| 27912150  4453.98

p2011-02-21 | 68985.05  5659.49| 7228196  6161.38

Table 3: Average fitness values with standard deviations for the top twertmguristics with 1 hour of
execution time

the search. SR-LATE is relatively slower. For SR-GD, the improvemestgss lags behind compared
to the other methods, but it consistently improves the solution.

During the further iterations, the performance of the hyper-heuristasgds. SR-LATE and SR-GD
catch the other hyper-heuristics. SR-IE almost stops improving afte2@ifisseconds due to the lack of
an effective diversification component.

Figure 3(b) presents the heuristics that found new best solutions dhergin for a particular in-
stance. From the figure, it can be deduced that each heuristic corgributee improvement process.
However, their effect might change for different parts of the seapdte. Therefore, employing an
intelligent selection mechanism can provide further improvements.
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Figure 3: (a) The best fithess changes during the run on p2018-Qdst 7), (b) The heuristics that
found new best solutions during the run on p2011-02-15 (run 5)

5 Conclusion

Hyper-heuristics are effective management strategies aiming to solvesariablems in a fast and easy
way. Therefore, different hyper-heuristics have been develapddapplied to solve distinct problems.
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In this study, we employed a hyper-heuristic using simple random as a selewichanism and a new
move acceptance strategy, i.e. adaptive iteration limited list-based threshefitiag with a fixed limit.
For the purpose of comparison, the proposed hyper-heuristic togeitiiefour other hyper-heuristics
from the literature were applied to a set of ready-mixed concrete delpmtylem instances. These
four approaches consist of the same selection mechanism with late acegpanulated annealing,
great deluge, improving equal move acceptance mechanisms. The exgatiresults showed that the
proposed approach performs better than the other hyper-heurissied ba their performance over the
target instances. Furthermore, extended execution time limit did not chamgerfiormance gap.

In the future, intelligent collaborations between hyper-heuristic compomneiitbe investigated.
For the selection process, a learning based approach will be desigdedmbined with the proposed
acceptance mechanism. In addition, the user-dependency of the depaiseneters for the acceptance
strategy will be reduced. The generality and robustness of the hypeistic will be examined via
extensive experiments additionally on other combinatorial optimisation problems.
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