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ABSTRACT

GROUP DECISION MAKING FOR MOVE ACCEPTANCE IN
HYPERHEURISTICS

A hyperheuristic is a heuristic that performs a search over a set of low-level
heuristics for solving difficult problems. A perturbative hyperheuristic consists of two
successive stages. In the first stage, the most appropriate perturbative low-level heuristic is
selected and applied to a candidate solution, then, a decision is made whether to accept or
reject the new solution. In this study, seven heuristic selection mechanisms are combined
with four group decision making strategies for move acceptance to investigate twenty-eight
hyperheuristics over well-known benchmark function optimization and examination
timetabling problems. Experimental results on these problems show that the group decision
making move acceptance strategies might improve the performance of hyperheuristics

significantly.



OZET

USTBULUSSALLARDA HAREKET KABULU ICIN GRUP KARAR
VERME

Bir iistbulussal, zor problemleri ¢ézmek i¢in bir diisiik-seviyeli bulugsallar kiimesi
lizerinde arama yapan bir bulussaldir. Gelistirici bir istbulugsal ikiardisik asama
icermektedir. ilk asamada, en uygun, gelistirici diisiik seviyeli bulussal secilir ve bir aday
¢Oziime uygulanir, daha sonra, yeni ¢oziimii kabul etmek ya da reddetmek icin bir karar
verilir. Bu ¢alismada, yedi bulussal se¢im mekanizmasi, dort hareket kabul i¢in grup karar
verme stratejisi ile, iyi bilinen matematiksel denektasi fonksiyonlari ve sinav zaman
cizelgeleme problemleri lizerinde yirmi sekiz iistbulugsali incelemek icin birlestirilmistir.
Bu problemler {izerindeki eneysel sonuglar, grup karar verme hareket kabul stratejilerinin,

iistbulussallarin bagarimini 6nemli 6lciide gelistirebilecegini gdstermektedir.
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1. INTRODUCTION

1.1. Motivation

Cowling, Kendall and Soubeiga (2000) and Burke et al. (2003) describe
hyperheuristics as easy to implement high level heuristics that manage a set of low level
heuristics. It is also stated as “heuristics to choose heuristics” (Burke et al. (2003)), since
the method performs search within search space of heuristics, instead of problem space
(Ross (2005)). In a hyperheuristic approach, a single (or a set of) low level heuristic is
selected based on some problem independent measures and applied to a candidate solution.
Bilgin, Ozcan and Korkmaz (2006) identify a simple hyperheuristic as a two-stage
approach that performs a search using a single candidate solution in an iterative cycle. A
simple hyperheuristic combines heuristic selection and move acceptance strategies. Simple
hyperheuristics are also referred to as perturbative (or improvement) hyperheuristics as
well, since they utilize a set of perturbative (improvement) low level heuristics. In this
thesis, these terminologies can be used interchangeably. In Bilgin, Ozcan and Korkmaz
(2006), combinations of seven heuristic selection mechanisms and five move acceptance
strategies are tested over a set of benchmark problems. The empirical results indicate that
the move acceptance strategy plays an important role in the overall performance of a
hyperheuristic. Additionally, it is observed that different acceptance mechanisms might
yield different performances for different problem instances. This observation is vital,
since it implies that another level can be introduced on top of the hyperheuristics that can
be used for managing them. Then the question arises: “How are we going to end this

hierarchical growth in the levels?”

Burke, Kendall and Soubeiga (2003) present a hyperheuristic framework (Fa)
without differentiating the type of low level heuristics. On the other hand, Ozcan, Bilgin
and Korkmaz (2006) separate mutational heuristics and hill climbers and propose three
additional hyperheuristic frameworks (Fs, Fc, Fp) that utilize such low level heuristics in a
different way. An improved or equal quality solution is expected from a hill climber as a
local search component, while a mutational heuristic is a methodological random

perturbation. The empirical results indicate the significant success of the framework Fc



that utilizes mutational heuristics only as low level heuristics and employs a single
predetermined hill climber at each step. Ozcan, Bilgin and Korkmaz (2008) verify the

same results in a different experimental setting having the number of heuristics reduced.

There are many different approaches used in search and optimization. Meta-
heuristics are commonly preferred methodologies for solving complex problems. Genetic
algorithms (GAs) are population based metaheuristics that simulate Darwinian evolution
and biological processes at a genetic level (Holland (1975), Goldberg (1989a, 1989b)).
Meme as a terminology is invented by Dawkins (1976). A meme denotes a “contagious”
piece of information that can be processed, digested, adapted and transmitted by each
infected member in a population. This overall course carries some similarities with local
improvement. Hence, GAs hybridized with hill climbing are referred to as memetic
algorithms, in which a meme denotes a hill climber (Moscato and Norman (1992),
Radcliffe and Surry (1994)). Multimeme memetic algorithms extend the definition of a
meme from hill climbing to other operators (Krasnogor (2002), Krasnogor and Smith
(2000-2002)). A meme (-plex) is allowed to encode all relevant features and properties of a
set of operators in a single structure. The memes are co-evolved with the genes. Ozcan,
Bilgin and Korkmaz (2008) analyze all these algorithms and compare their performance to
a hyperheuristic using the Fc framework on the same set of problem instances. The results

show that a hyperheuristic can generate a matching performance to a meta-heuristic.

As a disadvantage, the components of a meta-heuristic designed for solving a
problem might require modifications while solving another problem in another domain.
Although, Cowling, Kendall and Soubeiga (2000) imply that hyperheuristics are problem
independent, Ozcan, Bilgin and Korkmaz (2008) show that they still can not get away from
the “no free lunch” theorem (Wolpert and MacReady (1997)). The set of low level
heuristics, heuristics selection method, move acceptance strategy and/or the framework
used in the methodology might become problem dependent. Therefore, the properties of

the problem at hand should still be considered while using a hyperheuristic for solving it.



1.2. Methodology

In this study, move acceptance stage within the simple hyperheuristics is focused and
four different move acceptance methods that are derived from well known group decision
making models which involve different characteristics are investigated. As it is mentioned
before, hyperheuristics have a heuristic selection mechanism to choose the best heuristic
for the current step to get a better performance among a set of low-level heuristics.
However, for move acceptance mechanism, researchers used just one of them in their
hyperheuristics until now. What about using a bunch of them and giving more healthy
decisions by combining their strength.

The use of a group decision making strategy allows all mechanisms to operate in the
same level. Hyperheuristics that combine these move acceptance strategies with seven
heuristic selection methods are tested within the traditional framework over fourteen
benchmark functions and twenty-one examination timetabling problem instances. The
experiments are repeated using the Fc hyperheuristic framework for the benchmark
functions. Moreover, the performances of the group decision making hyperheuristics are
compared to the other approaches from previous studies.

1.3.  Objective of the Research

Objective of the research is to find a way to end the hierarchical growth of
hyperheuristics by employing group decision making strategies during move acceptance.
Actually, it is obviously hard to state such a certain expression about the level of
hyperheuristics. But, here, the thing that we tried to say is, there will be no need to bother
about the move acceptance part of hyperheuristics by using group decision making
strategies. Since, we anticipate that this group decision making idea will get rid of

weaknesses of them during benefiting from the power of their combination.

The other aim of this study is to provide new research directions for hyperheuristics.
It is stated that there will be no need to work on move acceptance, anymore, because, it
will already meet the requirements of today’s studies. Nevertheless, there can be additional

studies to improve the proposed idea by answering some questions and getting some



desired conclusions such as “Which set of move acceptance is the best”, “What about other

group decision making strategies”, “Performance of them on different problems”.

1.4.  Organization of the Thesis

This thesis is divided into seven chapters. This chapter is about motivation behind the
research and objective that directs us to work on it. The remaining chapters are constructed

in the following way:

In Chapter 2, the idea of hyperheuristics is introduced, then, the intellectual roots of
hyperheuristics for being aware of the starting point and a detailed literature survey that
consists of previous academic and practical works is presented. Some hyperheuristic
approaches are explained. Current application areas, problems, are listed with references.

In Chapter 3, overview belongs to the main subject of our research which is group
decision making is provided and question of “How can group decision making be applied

onto Hyperheuristics” is answered. The related hyperheuristic frameworks are presented.

In Chapter 4, first experimental phase of this research is introduced and some
mathematical benchmark functions for the experiments are provided. Our heuristic set,
experimental settings and results of these experiments with a comprehensive performance

analysis is given.

In Chapter 5, another problem domain, examination timetabling is introduced and
literature survey is presented. Also, the mathematical formulation of this problem is
provided. In Chapter 6, group decision making hyperheuristics for examination timetabling
are discussed along with the experimental data set. Additionally, low level heuristics to

solve the problem, experimental settings and experimental results are provided.

The last chapter discusses conclusions and remarks with possible research directions.

Additionally, full list of references and some appendixes about experimental results
are provided at the end of the thesis.



2. HYPERHEURISTICS

2.1. Introduction

Many researchers have been progressively involved in hyperheuristics as an
emerging approach in search and optimization (Cowling, Kendall and Soubeiga (2000),
Burke, Kendall and Soubeiga (2003)). A hyperheuristic can be considered as a heuristic
scheduler. An appropriate heuristic or a set of heuristics is selected and applied to a
candidate solution. As a layered approach, and hyperheuristic layer interact with problem
and heuristic layers through problem independent measures, such as the quality change in a
candidate solution when the selected heuristic is employed as illustrated in Figure 2.1. A
hyperheuristic pattern denotes a triplet; the hyperheuristic instance, the hyperheuristic
framework and the set of low level heuristics used for solving a problem. Initially
hyperheuristics are suggested as an alternative to meta-heuristics. However, meta-
heuristics can be used as a hyperheuristic or a hyperheuristic can be used within a meta-
heuristic. Moreover, hyperheuristics can be hybridized with any other approach. A problem
can be encoded using a direct representation or an indirect representation. For example,
assuming that there is a timetabling problem for which the aim is assigning a set of events
to a given set of time periods, then a candidate solution can be implemented using an array.
The encoding where each entry is an assignment of an event is a direct representation. For
example, Bilgin, Ozcan and Korkmaz (2006) investigate the performance of
hyperheuristics over examination timetabling using direct representation. Each entry in a
candidate solution encodes the period when a corresponding examination will be held. On
the other hand, if each entry of the array encodes a heuristic that will construct the
schedule for the corresponding event, this scheme is an indirect representation. As an
example, Burke et al. (2007b) solve examination and course timetabling problems by using
such a representation. Their hyperheuristic is based on a tabu search mechanism that

assigns proper graph colouring heuristics for constructing an examination timetable.



4 Hyperheuristic Layer

v Problem Layer

Figure 2.1. Layers in a generic hyperheuristic framework

Bilgin, Ozcan and Korkmaz (2006) distinguish the heuristic selection and move
acceptance processes within the hyperheuristic layer. Simple hyperheuristics select a
heuristic from a set of low level heuristics, apply the chosen heuristic to the candidate
solution and finally decides whether to accept or reject the new solution at each step as
presented in Figure 2.2. An initially generated solution goes through this process
repetitively until a set of termination criteria is satisfied. Hopefully, the final solution is the
optimal solution for the problem at hand. The best performing hyperheuristic framework
Fc allows better use of hill climbers in combination with mutational heuristics by
embedding a hill climbing component to the generic framework, right after the step
number 5 in Figure 2.2. (Bilgin, Ozcan and Korkmaz (2006)). The move acceptance
criteria in this framework evaluate the combined performance of the selected mutational

heuristic and the hill climber.

1. start from an initial candidate solution c

2. while (termination criteria not met){

3. select a heuristic a= Hi|{H4, ..., Hi, ..., Hn}
4.  make a move to a new solution ¢’ =a(c)
5. by applying chosen heuristic to ¢

6. decide accept_reject(c’)

7 if (c’is accepted) then

8. c=c’

9 1}

Figure 2.2. Generic simple hyperheuristic framework




2.2.  Literature Survey

Fisher and Thompson (1961, 1963) and Crowston et al. (1963) generated initial
studies on hyperheuristics by employing their approaches to the Job-Shop Scheduling
Problem (JSSP). In their hyperheuristic, a probabilistic learning strategy is employed that
assigns and sets weights of heuristics for adaptation. Fang, Ross and Corne (1994) used
genetic algorithm based on a hyperheuristic for solving an Open-Shop Scheduling Problem
(OSSP). Although the approach was not referred to as hyperheuristic, Gratch, Chein and
Jong (1993) utilized multiple heuristics for planning communication schedules to satisfy
available constraints for earth-orbiting satellites and ground stations selecting the best one
a not the term. They called their approach as COMPOSER. Hart, Ross and Nelson (1998)
utilized a genetic algorithm for managing a set of heuristics to solve chicken catching and
transportation problem. Cowling, Kendall and Soubeiga (2000) tested most of the simple
hyperheuristic components on a sales summit scheduling problem (SSSP). Simple Random
(SR) heuristic selection mechanism randomly chooses a low level heuristic based on a
uniform probability distribution at each step. Random Descent (RD) selects the heuristic in
the same manner as SR, but applies it repeatedly until no improvement is achieved.
Random Permutation (RP) generates a random initial permutation of the low level
heuristics and at each step applies a low level heuristic in the provided order sequentially.
Random Permutation Descent (RPD) processes the low level heuristics in the same manner
as RP, but proceeds in the same manner as RD without changing the order of heuristics.
The Greedy (GR) method applies all heuristics to a given candidate solution and selects the
one that generates the most improved solution. Choice Function (CF) uses a learning
mechanism that scores low level heuristics based on their individual and pair-wise
performances. The heuristic having the best score is selected at each step and applied to the
candidate solution. Cowling, Kendall and Soubeiga (2000) used only two simple
acceptance criteria in their study. AM accepts all moves and Ol, that accepts only
improving moves. According to the experimental results, the CF_AM hyperheuristic shows
potential. Again, Cowling, Kendall and Soubeiga (2001) used their background from their
previous study (Cowling, Kendall and Soubeiga (2000)) and applied hyperheuristics onto
Project Presentation Scheduling Problem (PPSP). In addition, Cowling, Kendall and
Soubeiga (2001) used choice function which ranks the low-level heuristics based

hyperheuristic to solve SSSP.



Burke et al. (2002a) proposed a new hyperheuristic utilizing case based reasoning
(CBR) approach that attempts to make reasonable predictions during heuristic selection
process by the help of previous knowledge. Burke, Petrovic and Qu (2006) extended this
study and tested such a system on a set of timetabling problems. Cowling, Kendall and
Han (2002a) named genetic algorithm based hyperheuristics as hyper-GA and investigated
its performance on a trainer scheduling problem. After that, Cowling, Kendall and Han
(2002b) modified this approach that allows variable length chromosomes, named as
adaptive length chromosome hyper-GA (ALChyper-GA) and tested it on the same
problem. Ross et al. (2002) proposed a hyperheuristic learning classifier system (LCS) for
solving bin-packing problem. Han and Kendall (2003a) extended their hyper-GA approach
using tabu search for preventing invocation of inefficient low-level heuristics and named it
as hyper-TGA. Han and Kendall (2003b) attempted to improve hyper-GA using somewhat
guided genetic operators to support more efficient removal and insertion processes of
heuristics and heuristic sequencing. Cowling and Chakhlevitch (2003) applied eleven
hyperheuristics including greedy, simple random, peckish and variants of a tabu-search
using a large set of low level heuristics to two personnel scheduling problems. Rossi-Doria
and Paechter (2003) used an evolutionary algorithm based hyperheuristic to solve course

timetabling problem.

Ayob and Kendall (2003) tested Monte Carlo acceptance mechanisms that accept
non-improving moves based on a probabilistic framework along with the improving
moves. Exponential Monte Carlo (EMC) accepts a worsening move with a probability of pt
as presented in Equation (2.1). Exponential Monte Carlo with Counter (EMCQ) extends
EMC by utilizing a counter that resets and increments for each consecutive non-improving
move and causes the probability to increase. The authors compared different
hyperheuristics and the results yielded with the success of the SR_MC hyperheuristic.

Af xAt

D, = e_AFxth (2.1)

where Af is the fitness change, AF is an expected range for the maximum fitness change, At

is the time change, t is the possible time interval between two moves, Q is a counter



Burke, Kendall and Soubeiga (2003) proposed a hyperheuristic that combines tabu-
search and ranking as a heuristic selection mechanism for timetabling (TABU_IE). The
ranks of heuristics determine which heuristic will be applied to the candidate solution,
while the tabu list holds the heuristics that should be avoided. A reinforcement learning
mechanism updates the rank of a low level heuristic based on the change in the quality of a
candidate solution after the selected heuristic is employed. Ross et al. (2003) used a messy-
GA based hyperheuristic that decides on which heuristic combination is the best to reach a
feasible solution for one-dimensional bin packing problems. Burke, Silva and Soubeiga
(2003) investigated multi-objective hyperheuristics for generating a uniform pareto front.
Ross, Marin-Blazquez and Hart (2004) experimented with the same hyperheuristic on a set
of timetabling problem instances using three different fitness measures. Nareyek (2004)
compared two hyperheuristics using a variety of reinforcement learning mechanisms based

on different weight adaptation strategies on two constraint optimization problems.

Kendall and Mohamad (2004) experimented with a hyperheuristic that used SR
heuristic selection method and Great Deluge (GD) acceptance criterion stochastic
acceptance mechanism on a set of channel assignment problems. GD is based on a
stochastic framework which allows improving moves by default and non-improving moves
if the objective value of the candidate solution is better or equal to an expected objective
value, named as level at each step. The objective value of the first generated candidate
solution is used as the initial level and the level is updated at a linear rate towards a final

objective value as shown in Equation (2.2).
t
7, =f, +AF x[l—?j (2.2)

where 1 is the threshold level at step t in a minimization problem, T is the maximum
number of steps, AF is an expected range for the maximum fitness change and f, is the final
objective value. Burke and Bykov (2006) proposed a modified version of GD, referred to as
Flex Deluge (FD). This new hyperheuristic introduced a flexibility factor that provides a
search characteristic in between GD and hill climbing. The experimental results over a

subset of examination timetabling benchmarks showed that the approach is promising.
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Bai and Kendall (2003) employed a simulated annealing based hyperheuristic to
solve different types of shelf space allocation problems, while Dowsland, Soubeiga and
Burke (2005) used the similar strategy for providing optimal space allocation. Kendall and
Hussin (2004) applied the tabu-search hyperheuristic to solve the examination timetabling
problem of University Technology MARA, the largest university in Malaysia. Two
different tabu duration management strategies and three different move acceptance
mechanisms were tested. Gaw, Rattadilok and Kwan (2004) proposed a distributed choice
function for solving timetabling and scheduling problems. Burke et al. (2005a) developed
an ant algorithm based hyperheuristic that determines an effective sequence of heuristic
moves for solving project presentation scheduling problem. Burke, Silva and Soubeiga
(2005) modelled a tabu-search based hyperheuristic as a multi-objective approach for
selecting the best heuristic considering the objectives. This multi-objective hyperheuristic
Is tested on two different real-world optimization problems, namely; space allocation and
timetabling. Burke et al. (2005b) studied a different approach that hybridized two graph
colouring heuristics (Saturation Degree and Largest Degree) with a tabu search
hyperheuristic and the related experiments were performed on a set of examination
timetabling data. Cuesta-Cafiada, Garrido and Terashima-Marin (2005) successfully
combined hyperheuristics with ant-colony optimization algorithm for solving 2D bin
packing problems. Qu and Burke (2005) proposed a hybrid approach by using VNS in
hyperheuristics as a mechanism which provide efficient usage of search spaces belonging
low-level heuristics. Burke, Hyde and Kendall (2006) used genetic programming as a
hyper-heuristic that provided an efficient decision mechanism for a set of low-level
building blocks during construction of a successful heuristic in the study on bin packing
problem. Ersoy, Ozcan and Uyar (2007) compared the performance of different simple
hyperheuristics that were utilized to manage multiple hill climbers within the memetic
algorithms on a set of examination timetabling benchmark problem instances. Marin et al.
(2007) presented two different evolutionary computation based models which includes
Learning Classifier System (LCS) and Genetic Algorithm (GA) to produce efficient
hyperheuristics for solving 2D Bin Packing Problem (BPP).

Rodriguez, Petrovic and Salhi (2007a) proposed a number of meta-hyperheuristic
approaches with GA and applied them Hybrid Flow Shop (HFS) problem. Again,

Rodriguez, Petrovic and Salhi (2007b) worked another study which is about associated



11

problem that is related finding the best sequence of heuristics to construct the desired
solution and defined the associated problem for constructive hyperheuristics. Rodriguez
and Salhi (2007c) introduced a hybrid approach called Meta-Hyper-Heuristic Scheduler
(MHHS) by combining meta-heuristic and hyper-heuristic based on an evolutionary
method. Burke et al. (2007a) studied an automatic heuristic generation technique using GP.
Garrido and Riff (2007) presented an evolutionary hyperheuristic to solve 2D Strip
Packing Problem (SPP), also, Araya, Neveu and Riff (2008) designed a hyperheuristic
framework to solve 2D SPP. Thabtah and Cowling (2008) used some associative
classification techniques as supervised learning mechanisms to perform data mining for

predicting the most appropriate low-level heuristic to apply during further steps.

An acceptance criterion used within the simple hyperheuristics can be labeled as
parametric if the acceptance and rejection of a move is decided by a rule depending on a
set of parameters. Otherwise, the move acceptance method is called non-parametric.
Additionally, an acceptance mechanism can be characterized as stochastic (non-stochastic)
if a probabilistic framework is (not) utilized while accepting or rejecting a move. EXisting

move acceptance methods falls in one of three categories as presented in Table 2.1.

Table 2.1. Categorization of existing move acceptance methods used within simple
hyperheuristics.

non-parametric parametric
stochastic - MC, SA
non-stochastic AM, IE, Ol GD, FD

In the following subsections, some promising hyperheuristics are focused. Most of
these techniques attempt to embed some form of intelligent mechanism in the approaches
to perform a better search. In the previous studies, learning is achieved mainly based a
machine learning technique or through Darwinian evolution. The low level heuristics can

be perturbative of constructive heuristics.
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2.2.1. Reinforcement Learning Hyperheuristics

Reinforcement Learning is a widely studied research area under machine learning. It
provides a learning mechanism which helps an agent to learn how to behave an action
comes during any state through “trial-and-error” interactions (Kaelbling, Littman and
Moore (1996)). It can also be stated as learning “how to map situations to actions” to
maximize reward of the agent (Sutton and Barto (1998)). The characteristic of the
environment is important to apply reinforcement learning. It can be either stationary or
non-stationary. Stationary environment means that any action taken during any state will
result with the same state for all the time. For instance, a robot that must get out from a
maze will go in the same direction when an action comes at the same coordinate. On the
other hand, non-stationary environment has a dynamic structure, so, it is the opposite of the
stationary. The most famous work about reinforcement learning and its application as a
hyperheuristic is presented in Nareyek (2004). He used reinforcement learning to provide
an adaptive system by using weights for each heuristics based on their performances. He
proposed two different heuristic selection functions. First one is about probability based
selection by looking theirs utility values, weights (2.3) and it is called as fair random
choice. The other one is available for heuristics which have maximum utility values. A
heuristic with maximum utility is chosen to be applied onto the current candidate, if there
are more than one maximum weighted heuristic, a random choice applied to choose one of

them.

Pa=Wa/ Z Wi (2.3)

Different weighting strategies applied to make adaptive performance measurements
and they are listed in the following table. If newly created solution is better than the current
one, then positive reinforcement is applied. On the other hand, if the new solution is worse

than or equal to the current, than negative reinforcement is applied on the chosen heuristic.

Table 2.2. Reinforcement learning weighting strategies with positive and negative

reinforcement (Additive: +, Subtractive: -, Multiplicative: x, Divisive: /).
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2.2.2. Choice Function Hyperheuristics

A Choice Function Hyperheuristic (Cowling, Kendall and Soubeiga (2000)) is a
learning based adaptive system that tries to rank low-level heuristic by looking their
previous performances during optimization process. This performance measurement phase
is handled by three distinct strategies: own performance, pair-wise performance, elapsed
time for a heuristic last called. So, it gives a chance to make a deeper judgment regarding

low-level heuristics.

The first used performance measurement criteria is straightforward, measure the
performance of each heuristic separately. Evaluation of a heuristic is achieved by getting
information about improvement that is provided by a heuristic in a unit time. To make this
phase more plausible and reach a better conclusion, a constant integer term, « [0, 1], is
used to increase the degree of importance of the recent successes. It is mathematically

defined as in Formula 2.4. N; is the low-level heuristic that we want to measure its
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performance, In (N;) is value of improvement and Tn (N;) is the elapsed time during the n

iteration.

—~

Z
-

~

fl(Nj):ZaH (2.4)

For the further performance calculations of each heuristic, previous values that come
from (2.4) can be used as it is in (2.5).

flcurrent(N ) — ! (N 1) +a- flpreViOUS(N ) (2.5)
TUTIN) ‘

The second one is related to pair-wise performance. That is, this approach measures
performances of consecutively applied heuristics. Mathematical definition is given in (2.6).
According to the formula, heuristic N; is applied just after heuristic Nk and the other
functions, In (Nj, Nk) and Tn (N;j, Nk) do the same job in (2.4), but now for two low-level
heuristics instead of one. Differently, « is replaced with g, but the possible values are the

Same.

2 (N, Ny)

fa(N, Nj) = Zﬂ _l(T (NN )) (2.6)

Again, this calculation can be done for only once, then, for the further evaluations
(2.7) can be used.

(N, N;)

fcurrentN ,N- —
e () T(N, N;)

+ﬂ . fzprevious(Nk, N]) (2.7)
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As it is stated in the beginning, there is one more function (2.8), for the performance
measurement and it is simply elapsed time since the last called for a heuristic. It is used for
diversification process, but the first two are used for intensification. So, choice function
hyperheuristic provides a system which improves the solution and decreases the possibility
of being stuck at local optima.

fS(Nj):T(Nj) (2.8)

2.2.3. Simulated Annealing Hyperheuristics

Simulated Annealing (SA) (Kirkpatrick, Gelatt and Vechhi (1983)) is a non-
deterministic optimization technique that was born from annealing metals and it is imitated
version of real annealing operation. The process of giving form to a metal includes two
phases; first, solid metal must be heated to a high temperature which causes the atoms
move freely to change its state into a soft structure (high energy state), and, it must be
cooled down to change its state into a crystallized structure (low energy state) with a rigid
shape. SA is used solving NP-hard (Garey and Johnson (1979)) combinatorial optimization
problems in a problem independent manner by using a stochastic decision system. It
includes a diversification mechanism for escaping from local optima and intensification

mechanism, naturally.

SA approach is used as a hyperheuristic mechanism in Bai and Kendall (2003),
Downsland, Soubeiga and Burke (2005). Hyperheuristics have a heuristic selection and a
move acceptance methods and SA is used as a move acceptance decision strategy in the
first mentioned study. The pseudo code of SA hyperheuristic for a maximization problem
is provided in Figure 2.3. First of all, an initial solution is selected, as it happens in each
perturbative or improvement hyperheuristics, then, optimization process of hyperheuristic
starts by selecting a heuristic, randomly. So, in this method, heuristic selection is coded as
SR.
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Select an initial solution so;
Repeat
Randomly select a heuristic heH ;
iteration_count = 0;
Repeat
iteration_count ++;
Applying h to So, get a new solution s ;
o=f (S1) — f (So)
if (0>0)then sp=s1;
else
Generate a random x uniformly in the range (0,1);
if (x<exp(o/t))then so=s1;
Until iteration_count = nrep;
t=t/1+pB*1);

Until the stopping criteria = true.

Figure 2.3. SA Hyperheuristic Pseudo Code (Bai and Kendall (2003))

After the heuristic selection process, the chosen heuristic applied on the solution at

hand and new solution is generated. It is evaluated by a fitness function and IE acceptance

mechanism looks at the new solution to give its decision whether to swap the solutions. If

the solution is not good enough at least as the previous one, then a worsening moves

acceptance system gives its decision about the solution based on Metropolis probability

(Metropolis et al. (1953)). Then, the key point about annealing comes out by the

temperature. Each time, the temperature is decreased as cooling process by a constant

value, #, which is calculated as in (2.9) (ts = Starting Temperature , tr = Ending

Temperature, K = Total # of Evaluations). In conclusion, this cooling means that,

probability concerning acceptance of bad moves decreases in time, too. In addition, there

exists a learning based selection for heuristics by assigning some weights to heuristics and

updating them by looking at their performances.

ﬂ:(ts—tf)/Kthth

K = Tallowed/Tavg

(2.9)

(2.10)
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In addition, to calculate the value of K, (2.10) is used with two parameters called
Tallowed @nd Tavg. TO reach the value, we take the ratio of maximum time for the search and
optimization process and average spent unit time for each iteration. That is, this gives us
information about possible number of iterations to reach a desired solution within pre-
defined limited time. Finally, there is also one other parameter, initial temperature (ts) to be
calculated carefully. Some researchers (Dowsland (1995), Johnson et al. (1989, 1991),
Ben-Ameur (2004)) worked on this issue, especially and proposed different approaches to

calculate it.

2.2.4. Tabu Search Hyperheuristics

Tabu Search ((Glover (1989, 1990))) is an optimization algorithm and a local search
technique that is used to solve combinatorial optimization problems. It is based on
introducing flexible memory structures in conjunction with strategic restrictions and
aspiration levels as a mean for exploiting search spaces (Ganapathy, Marimuthu and
Ponnambalam (2004)). The main structure of this meta-heuristic is about mentioned
flexible memory structure. It is a short-term memory to prevent making cyclic moves by
using a tabu list which holds recent history belonging forbidden moves. Here, it is an
important issue to determine the tabu list size to reach an efficient search mechanism that

does not be stuck in any local optima.

Tabu Search Hyperheuristic (TSHH) (Burke, Kendall and Soubeiga (2003)) is a
methodology to embed and adapt tabu search idea into a hyperheuristic to provide a

generic problem solving strategy via getting rid of tabu search’s problem specific structure.

In Burke, Kendall and Soubeiga (2003), heuristics are thought as attributes that are
used for tabu list as forbidden moves to exclude some heuristics from the selection pool of
low-level heuristics. Also, reinforcement learning is used to present a ranking mechanism
within a score range, changes between 0 and number of low-level heuristics, because of the
competition between heuristics and to differentiate them based on their performances. In
Figure 2.4, pseudo code of TSHH is given and it simple states that, if there is an
improvement, then increment ranking of currently applied heuristic, otherwise, decrement

it and add it to a variable length dynamic tabu list.
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Do:

Select heuristic k with highest rank and apply it once
If A>0thenrk =rk + a
Else rk =rk - a, Include heuristic k inTABULIST

Until Stopping condition is met

Figure 2.4. THH Framework; rx denotes rank of the heuristic k, « = 1, A is change in the
objective function.

2.2.5. Genetic Algorithm based Hyperheuristics

A Genetic Algorithm based Hyperheuristic (hyper-GA) (Cowling, Kendall and Han
(2002)) is a hyperheuristic which uses GA as a heuristic selection mechanism to solve wide
range of problems via indirect representation. In this representation, each gene is coded
with a number showing a heuristic. In Han and Kendall (2003), an example of hyper-GA is
presented. 14 low-level heuristic provided to solve geographically distributed training staff

and course scheduling problem and they are encoded with numbers from 0 to 13.

2 |3 |1 (5 (0 (7 |9 |8 |11 |1 |10 |9 |12 |13

Figure 2.5. An example of a hyper-GA (Han and Kendall (2003))

In Figure 2.5, an example belongs to hyper-GA is given and it shows the order of
heuristics which will be applied onto the current solution. That is to say, this
representation, chromosome, is available for answering the questions of which heuristic
will be applied and in which order? Because of GA is a population based search and
optimization problem solving methodology, hyper-GA also performs its search with a
population and each chromosome is an individual in this population. Mutation and
crossover operations also exist to evolve the population for generating a better generation

in an adaptive way.
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=

Generate an initial solution (S) randomly

2. Generate 30 initial chromosomes (length of 14, # of low-level
heuristics), put them into a pool (population)

3. For each chromosome k (0 < k <30),

a. Apply low-level heuristics in the order given in the chromosome

to S

b. Record the solution Sk

c. Record the change each single gene makes to the objective

function

Compare each Skto S: if S > S, then S = Sk

Select parents. For each pair of parents: decide which crossover

operator to us and apply it based on px (Crossover Rate)

6. Select chromosomes for mutation, for each: decide which mutation
and apply it based on pm (Mutation Rate)

7. Add all new chromosomes and 10 best chromosomes in current pool

to a new pool. If the stopping criteria is met, stop the evolution, else,

go to 3.

ok~

7T %

Pseudo code of hyper-GA is available in Figure 2.6. It simply works in a way that;
take one chromosome which includes heuristic order and apply all the heuristics in the
given order, repeat this process for each chromosome. As a result, get the best produced
solution from the pool. Then, perform genetic operations for each individual based on

crossover and mutation rates.

2.2.6. Multi-Objective Hyperheuristics

Multi-Objective Optimization (Sawaragi, Nakayama and Tanin (1985)) is a parallel
optimization process that tries to satisfy the available objectives concerning a set of
constraints by preserving some kind of trade off about the objectives. This trade off issue
provides a balanced solution for any multi-objective optimization problem (MOP) such as
graph coloring problem (GCP). At this point, famous “no free lunch” theorem comes out
and it states that if one objective or constraint is solved in the most optimized way, then for
the rest, the situation will not be as bright as the solved one. So, it is an absolute necessity
to solve all the objectives according to their importance by arranging a settlement between

them.

Differently from general characteristics of single objective optimization, there can be

more than one global optimal point which satisfies the requirements of a problem. These
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points form a set of non-dominated solutions which provides the same benefits from the
general quality of the solutions’ perspective and it is called Pareto Optimality Set. The
pareto concept is provided in Figure 2.7 and the figure shows two objectives (yi1, y2) and

decision points for them.

y2

A
Pareto Optimal
(non-dominated solutions)
©
O,
©
©
©)
©
©
> Y1

Figure 2.7. Pareto Optimality (Zitzler (2002)). The line denotes the pareto front that takes
shape from all the optimum points or solutions. The red donuts denote dominated

solutions.

When a MOP is solved, then we have a list of optimal solutions as a pareto front.
Then, we must give a decision concerning necessities of the problem to choose one among

them.

Multi-objective optimization is used with TSHH in Burke, Silva and Soubeiga
(2005). In this study, reward & punishment strategy belonging reinforcement learning is
used and aim of the study is to push the solution to the pareto front to reach optimal
solution. So, the learning mechanism helps to determine which objective can be solved
with which heuristic at which time. They proposed three distinct TSHH frameworks and
tested them with learning and without learning. One of the presented algorithms is

provided in Figure 2.8.

Randomly generate an initial population of P solutions.
For each solution in the initial population, Do

a. Select an individual objective u uniformly at random.
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Figure 2.8. Single Tabu Random Uniform (TSRandUnif)

In the given algorithm, first of all, an initial population is generated for the problem.
For each possible solution in the problem, an objective is selected to be optimized and to
optimize it a heuristic which is the highest ranked one via reinforcement learning scoring
mechanism is selected and applied onto it. Based on the performances of heuristics, they
are added into the tabu list or the tabu list is made empty as it performs in TSHH. These

operations are performed for the other objectives, too.

2.2.7. Ant Algorithm based Hyperheuristics

Ant algorithm or Ant Colony Optimization (ACO) (Dorigo (1992)) is a nature-
inspired algorithm which simulates real ants or their colonies who try to find a path for
food to solve combinatorial optimization problems. ACO is used within hyperheuristics as
population which involves ants as hyperheuristic agents to construct good sequences of
heuristics in a stochastic way (Burke et al. (2005), Cuesta-Cafiada, Garrido and Terashima-
Marin (2005)). This is a population based technique and the ants move together through
the best moving place or vertex or heuristic. That is to say, if ant produces the best move
for the current stage at a vertex, then all the others go the vertex where the applied heuristic
located in and make their moves at there. In addition, successive moves, which heuristic
will be applied then, are determined based on a probability value called pheromone that

gives some information about how well to apply a certain heuristic afterone other.
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2.2.8. Case-Based Reasoning Hyperheuristics

Case-based reasoning is a learning approach which tries to solve any problem by
using some information that comes from the past; that is, it is an offline, experience
oriented problem solving methodology. Another definition of CBR in different words can
be stated as “to solve a new problem by remembering a previous similar situation and by
reusing information and knowledge of that situation” (Aamodt and Plaza (1994)). The
terminology of case-base refers to memory of stored cases (Leake (1996)) which denotes

previous data: problems and solutions.

This idea is embedded in a hyperheuristic framework as a heuristic selection criterion
(Burke et al. (2002), Burke, Petrovic and Qu (2006)) and it is experimented on a set of
timetabling problem data. In these studies, all the main steps to create a CBR system are
listed. It starts with an important step for CBR design that is knowledge discovery process
which recognizes similarities between sources cases and target cases. It is implemented in

two different ways (Burke, Petrovic and Qu);

- Choose proper features (Kira and Rendell (1992)) which will be used as cases to
make good predictions about heuristics to be applied.

- Choose proper source cases.

Then, to reach an efficient feature list, features are trained to adjust their weights,
remove irrelevant features and introduce new features, if it is necessary. After that, case

bases are constructed.

2.2.9. Learning Classifier System Hyperheuristics

Learning Classifier System (LCS) (Bull (2003)) is an adaptive, rule-based learning
mechanism which consists of reinforcement learning and genetic algorithms (Holland
(1975), Booker et al. (1989), Goldberg (1989)). Classifiers are a set of rules that construct
the system and they can also be defined as set of state to action mappings. So, LCS

provides interaction between environment and actions and applies reinforcement learning
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to give score to each classifier by using a reward-punishment mechanism. In Ross et al.
(2002), a widely used version of LCS called XCS (Stewart (1995)) is used as a
hyperheuristic to solve bin-packing problem. The proposed system tries to determine the
best combination of low-level heuristics to solve a given problem for the current state
belongs to the solution. That is, this system finds the best pairs of state and action by
observing which heuristic must be applied at which state. With this approach, it will be
possible to get better results by using a combination of heuristics instead of just one. LCS

based hyperheuristic framework is provided in Figure 2.9.

Do

Select a heuristic and apply it to pack a bin
If it fills the bin, then reward
Else punish
(Do this for each altered states for each heuristic)

Until All I1tems has been Packed

Figure 2.9. LCS Hyperheuristic for bin packing problem. It finds which heuristic is better
to put an item into the bin. For instance, if the item is over 1/2 of bin capacity, then use
Largest-Fit Decreasing (LFD) or if the item’s size is from 1/3 upto 1/2 of bin capacity, then
apply Next-Fit Decreasing (NFD) etc.

2.2.10. Variable Neighborhood Search Hyperheuristics

Variable Neighborhood Search (VNS) (Hansen and Mladenovic (1997, 2001, 2005))
IS a recent metaheuristic which iteratively explores the search space by growing
neighborhood size in order not to get stuck at local optima. So, differently from other
single neighborhood search techniques such as SA, it does not accept worsening moves to
handle this local optima issue. A basic version of VNS algorithm for a minimization
problem is provided in Figure 2.10. VNS attempts to escape from a local optimum by
performing other local searches from starting points sampled from a neighborhood of the
current optimum, which grows its size iteratively until a local minimum is better than the
current one is found. These steps are repeated until a given termination condition is met.

As long as the candidate solution improves, the same neighborhood operator is used. In
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case of a worsening move, the next operator which has a larger step size than the current

one is invoked.

Choose the neighborhood, Nk, fork =1
Generate an initial solution (S) randomly from N
Do

g. Perform a local search and find a new solution (S)
h. If£(S°) <f(S) then S =S and k =1
i. Else
I. If' k # kmax then k = k + 1 (go to another neighborhood)

Until Stopping condition is met

Figure 2. 10. Basic VNS algorithm (kmax is the index of last neighborhood).

In Qu and Burke (2005) a hybrid VNS hyperheuristic approach is proposed.
Neighborhoods are thought as heuristics within low-level heuristic set. VNS hyperheuristic
manages a set of low level constructive graph heuristics by employing two different high
level VNS neighbourhoods. The low level heuristics include Color Degree, Largest
Degree, Largest Enrollment, Largest Weight Degree, Saturation Degree and a Random
Ordering method. The first high level VNS randomly updates N1=2, N>=3, N3=4, or N4=5
low level heuristics in a given candidate solution. On the other hand, the second one
randomly updates N1=2, No=3, N3=4, or N4=5 consecutive heuristics as a block in a given
candidate solution. The former VNS generates better results. Comparison with other
methods show that iterated local search is the better than VNS, tabu search and steepest

descent approaches for solving exam timetabling problems.

2.2.11. Genetic Programming Hyperheuristics

Genetic Programming (GP) (Koza (1992)) is a sub-category of evolutionary
algorithms (EAS) to create or construct computer programs which perform a given task by
a building blocks technique. It works like GA does in population that consists of some
individuals refer to computer programs (mathematical formula, logical formula etc.) in tree

structure. For instance, this tree structure can be simply a binary expression tree that
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presents a mathematical formula like in Figure 2.11, also directly a program structure is
provided in tree in Figure 2.12.

Figure 2.11. Simple Binary Expression Tree (Eiben and Smith (2003))

’ i =1;
4 while (i < 20)
{

i=1+1

}

Figure 2.12. A simple computer program (Eiben and Smith (2003))

There is also a ranking or scoring mechanisms (fitness measurement) for each
individual to observe their performances and is used for generally for parent selection
process. In addition, regular genetic operators that are used in GA are available in GP, too.
Recombination is for making an exchange between sub-trees and Mutation changes a tree

in a random way based on related probabilistic constants.



26

GP based hyperheuristics (Burke, Hyde and Kendall (2006)) construct or evolve
heuristics by building it. It works in a population based strategy that decodes individuals as
trees. So, it evolves trees by the mentioned GA operations. In Burke, Hyde and Kendall
(2006)), GP hyperheuristic is applied onto bin-packing problem. Based on an evaluation
algorithm, each piece that must be placed into a bin is tried to put into a bin just by
checking the suitable one. If it fits, then a new piece is taken and the algorithm performed

for the same procedure. Best of run individuals from this study is provided in Figure 2.13.
- S C +
F
C S F

Figure 2.13. Best of Run individuals for Bin Packing Problem (BPP)
C = Bin Capacity, F = Bin Fullness, S = Piece Size

From the figures, following two mathematical equations come out. According to the
evaluation algorithm, if they returns a value bigger than zero, then the current piece will be

put into a currently checked bin, if not, the next bin will be checked for its availability.

(C-F)-S (2.12)
C—(S+F) (2.12)

The important idea here is a human product heuristic can be evolved by a GP
hyperheuristic. In the result of the given study, a widely used BPP solver heuristic called

first-fit is generated by GP hyperheuristic.
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2.3.  Application Areas

Applications of hyperheuristics concentrate on combinatorial optimization and
operations research fields. Problems tackled using hyperheuristics vary from theoretical to
real world problems, such as, bin packing and timetabling. In the following table some

problems that are tried to be solved by hyperheuristics are provided.

Table 2.3. Sample application areas of hyperheuristics

Problem Domain Reference(s)
(University) Course Timetabling [24, 25, 26, 31, 77, 130]
(University) Exam Timetabling [17, 18, 26, 31, 59, 86, 129]
Staff Scheduling [77]

Nurse Rostering/Scheduling [24]

Bin Packing [21, 22, 47, 100, 127, 128]
Job-Shop Scheduling [46, 62, 63]
Open Shop Scheduling [61]

Project Presentation Scheduling [23, 45, 78]
Sales Summit Scheduling [43, 44]
Trainer/Training Scheduling [40,41, 42, 136]
Channel Assignment [87, 88]

(Shelf) Space Allocation [11, 32, 54]
Hybrid Flow Shop [123, 125]
Strip Packing [6, 67]
Communication Scheduling [75]
Component Placement Sequencing | [9]

Orc Quest Problem [106]

Logistic Domain Problem [106]

Class Timetabling [126]
Production Scheduling [124]
Satisfiability Problem [10]
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3. GROUP DECISION MAKING

3.1. Introduction

3.1.1. Definition

Group decision-making is defined as “the process by which a collective of
individuals attempt to reach a required level of consensus on a given issue” in Eliaz, Ray
and Razin (2007). This process contains two main phases; discussion between group
members and reaching a single group decision. The final outcome requires an agreement
based on a specified strategy which is available as decision criteria such as voting via

synergy that comes from each individual’s opinion.

Robbins and DeCenzo (2003) describe decision-making process consists of a set of
steps to reach a choice. At first, the problem is identified. Then, the factors that are
expected to be influential on the decision are listed. Each member of this list should be
associated with a specific weight according to its importance, that is, some kind of priority
should be established. After that, the alternatives that can meet the requirements are
considered. The effect and performance of each alternative strategy is analyzed. Among
all the alternatives, the best one is chosen and performed on the given issue. During this
process, three main circumstances can be encountered; certainty, uncertainty and risk.
From the certainty perspective, all the possible effects of the decisions are known. For
uncertainty, there is not enough information about the results of alternatives, then; a risk

must be taken to get rid of this uncertainty by associating some probabilistic values.

During the group decision making process, one of four main decision making
strategies as classified by Schwartz and Andrew (1994) should be chosen and applied
depending on the characteristics of a problem. One of them is the plop method. It works by
providing different ideas about a subject and arguing them, then accepting one of them. It
is very simple and commonly used approach, but it is not appropriate for all types of group

decisions. The other one is group decision making under an authority rule. It is an obvious
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strategy and directly related to the power. For instance, in a company, everyone provides
some ideas about a subject and discusses their ideas to reach a decision. However, in this
strategy the final decision is made by an authorized person, such as, a chairman. Another
model for group decision is the minority rule. It is similar to the previous case, but here,
there is no deep discussion. An authorized person asks whether the idea is accepted or not
and the silence of group members is considered to be the acceptance of the proposed idea.
In some case, everyone can be allowed to state an opposing idea, but the final decision can
be given by a small group of people, such as, the shareholders of a company without other
board of members. The last and the most known one is majority rule and it can be
exemplified with two different approaches. One of them is voting and it is a well known
system. Everyone votes for a decision, and then the decision that receives the majority of
the votes is the final decision. The other majority rule is called polling. Voting is
performed twice. A discussion session is arranged in between them. If the general opinion
is the same as before the discussions, then the idea is accepted.

3.2.  Group Decision Making Hyperheuristics

Four different group decision making strategies are proposed as a hyperheuristic
move acceptance mechanism: G-AND, G-OR, G-VOT, G-PVO. Each one of these move
acceptance mechanisms provides a decision whether the new candidate solution formed
after employing the selected heuristic is accepted or not by evaluating the decisions of
member move acceptance mechanisms as presented in Figure 3. G-AND and G-OR are
biased strategies. G-OR makes an acceptance oriented decision. If the members willing to
admit the new solution are in the minority, still, it is accepted. Even if there is a single
member that admits the new solution, that member acts as an authority and makes the final
decision. On the other hand, G-AND makes a rejection oriented decision. All the member
move acceptance mechanisms must be in agreement so that the new solution gets accepted.
Even if the members that reject the new solution are in the minority, it is rejected. G-VOT
and G-PVO are based on the majority rule. G-VOT is based on the traditional voting
scheme. If the number of members that vote for acceptance of the new solution, it is
accepted, otherwise it is rejected. G-AND, G-OR and G-VOT act under certainty, whereas
G-PVO is modeled favoring uncertainty to a degree using a probabilistic framework while

making the final decision. The probability of acceptance of a new solution dynamically
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changes proportional to the number of members that vote for acceptance within the group
at each step in G-PVO. For example, assuming that there are ten members in the group and
six of them accept the new solution at a step, then this solution is accepted by G-PVO with
a probability of 0.6. None of the group decision making move acceptance criteria requires
odd number of members, but it is preferable by G-VOT.

G-AND G-vVOT
no no
yes
lyes
ACCEPT
ACCEPT
G-OR G-PVO

0, REJECT o, pEjECT

lyes ves
ACCEPT ACCEPT

Figure 3.1. Group decision making strategies proposed as single move acceptance
mechanisms composed of k members, where M; denotes the i member move acceptance
mechanism, D(x) returns 1, if the strategy x accepts the new solution and 0, otherwise and r

is a uniform random number in [0,1].
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4. GROUP DECISION MAKING HYPERHEURISTICS FOR
BECHMARK FUNCTION OPTIMIZATION

4.1. Experimental Data and Settings

Fourteen well-known benchmark functions provided in Table 4.1 are used during
the initial set of experiments. Using benchmark functions with known characteristics allow
researchers to evaluate and compare the performance of their algorithms. The
characteristics of each function are summarized in Table 4.2. Binary representation is used
for the discrete functions, gray encoding is preferred for the continuous functions. Royal
Road (F12), Goldberg’s 3 bit Deceptive Function (F13) and Whitley’'s 4 bit Deceptive
Function (F14) are the discrete functions, whereas the rest of the functions are continuous.
The deceptiveness of Goldberg and Whitley functions arise due to the large hamming
distance between the global optimum and the local optima. Being separable indicates that
the overall fitness of a candidate solution can be decomposed into dimensional
contributions. This feature is important for an efficient execution, since it allows fast
computation of fitness by delta evaluation if a bit (or a set of bits) is flipped in a single
dimension. Modality denotes the number of global optima in a given function. Unimodal
functions have only a single optimum, while multimodal functions might have multiple
global and local optima. It is highly likely that an algorithm gets stuck at a local optimum

during the search.

Table 4.1. Benchmark functions used during the experiments

Label Formula Source

F1 f(x)=>x" De Jong (1975)
i=1
n-1

F2 f(X)=>.100(x,,, — x2)? + (x; —1)? De Jong (1975)
i=1

F3 f(X)=6-n+>[x | De Jong (1975)

i=1

F4 f(x) =) (-x" +U(01) De Jong (1975)
i=1



F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

f(X) = !

25 1
0.002+) ——

= j +Z(Xi _a-ij)6
i1

-32 > mod(j,25) =1
—16 — mod(j,25) =2
a; =9 0-—>mod(j,25)=3
16 — mod(j,25) =4
32 — mod(j,25) =0
-32->j>0Aj<5
-16—> j>5Aj<10
a, =7 0> j>10Aj<15
16 > j>15A j<20
32> j>20nj<5

£(%) =10-n+ Y (x ~10- cos(27x,))

i=1
f(%)=4189829 0+ x, -sin([x)
i=1

ot X TTeos
f(x)_z4000 Hcos(\ﬁ)+1

i=1

—0.2- %Zn:xlz lZn:cos(bzxi)
f(X)=20+e-20-e A

-3 (x-2)?
i=1

(%)= —(f[ cos(x,)) - (e )

f(X) =) order(s)o, (X),

seS

where o (X) = _
0 otherwise

and sisa schema

String 000 | 001 | 010 | 011

Value 1 3 3 8
String 100 | 101 | 110 | 111

Value 5 8 8 0

f(X)= Zn:VaIue(xi) ,

i=1
where x; is the i 3-bit string

1 if Xisaninstanceof s

String 0000 0001 0010 0011

Value 2 4 6 12

String 0100 0101 0110 0111

Value 8 14 16 30

32

De Jong (1975)

Rastrigin (1974)

Schwefel (1981)

Griewangk (1981)

Ackley (1987)

Easom (1990)

Schwefel (1981)

Mitchell (1997)

Goldberg (1989a, 1989b)

Whitley (1991)
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String 1000 1001 1010 1011
Value 10 18 20 28
String 1100 1101 1110 1111
Value 22 26 24 0

f(X)= Zn:VaIue(xi) ,
i=1

where x; is the i 4-bit string

Table 4.2. Characteristics of the benchmark functions used during the experiments

2 £ o

S = 2 g 8

: @ =] = = @

% range of Xxi g % § % %_
F1 [-5.12,5.12] 10 0 v x v
F2 [-2.048,2.048] 10 0 v o ox v
F3 [-5.12,5.12] 10 0 v o ox v
F4 [-1.28,1.28] 10 1 v vV
F5 [-65.536,65.536] 2 1 v v x
F6 [-5.12,5.12] 10 0 v v v
F7 [-500,500] 10 0 v vV
F8 [-600,600] 0 0 v v @x
F9 [-32.768,32.768] 10 0 v v x
F10 [-100,100] 6 -1 v @ x x
F11 [-65.536,65.536] 10 0 v x x
F12 n/a 8 0 x n/a v
F13 n/a 30 0 x n/a v
F14 n/a 6 0 x n/a v

Two sets of experiments are performed. During the initial experiments, twenty eight
hyperheuristic patterns are evaluated using all six heuristics under each group decision
making hyperheuristics within the traditional framework. During the second set of
experiments, all the experiments are repeated while the traditional framework is replaced
by the Fc framework. Within this framework, a hyperheuristic manages three mutational

heuristics and DBHC is employed after each application of a mutational heuristic.

During the experiments, Pentium IV 3 GHz LINUX machines having 2 Gb memories
are used. Fifty runs are performed during each test on a benchmark function. For a fair
comparison between all algorithms, the experiments are terminated if the execution time

exceeds 600 CPU seconds or the expected global optimum is achieved. Success rate, s.r.,
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denotes the ratio of successful runs in which the expected fitness is achieved to the total

number of runs.

4.2.  Hyperheuristic Patterns used During Benchmark Function Experiments

Six different heuristics are realized for the experiments. Seven heuristic selection
methods {SR, RD, RP, RPD, CF, GR, TABU} are combined with four group decision
making move acceptance mechanisms {G-AND, G-OR, G-VOT, G-PVOQO}, generating
twenty eight hyperheuristics. These move acceptance mechanisms embed IE, SA and GD
as group members. All three methods are the top methods obtained as a result of the
experiments performed in Ozcan, Bilgin and Korkmaz (2008). Furthermore, each member
move acceptance mechanism is an instance from a different category as previously

presented in Table 2.1.

4.3.  Heuristics for Benchmark Function Optimization

Half of the heuristics are mutational heuristics, namely; mutation (MUTN),
dimensional mutation (DIMM) and swap dimension (SWPD). MUTN s the traditional
mutation used in the genetic algorithms. A bit is flipped with probability of 1/len, where
len is the length of a configuration representing candidate solutions. DIMM perturbs all the
bits along a randomly selected dimension. SWPD selects two different dimensions in a
candidate solution randomly and then swaps their contents. The rest of the heuristics are
hill climbers: random mutation hill climber (RMHC), next gradient hill climber (NGHC),
Davis’s bit hill climber (DBHC). RMHC flips a randomly selected bit at each step and
repeats this process until a maximum number of steps is exceeded. NGHC processes each
bit in a given candidate solution at each step, consecutively, starting from the most
significant bit going towards the least. If there is an improvement in the quality of the
candidate solution when the bit in question is inverted, then the move is accepted,
otherwise it is rejected. The hill climbing process continues from the next bit. DBHC
adapts the same process as in NGHC at each step. The only difference is that the bits
representing a candidate solution are inverted in DBHC, successively with respect to a

sequence that is a random permutation of the bit locations.
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4.4.  Experimental Results and Comparisons

Table 4.3 presents the success rate of each hyperheuristic for all benchmark
functions within the traditional hyperheuristic framework. As a group decision making
move acceptance mechanism, G-VOT performs the best considering the average success
rate over all test cases. G- PVO, G-AND and G-OR follows G-VOT performance-wise in
that order as illustrated in Figure 4. The performance variance between the majority rule
move acceptance mechanisms and G-OR is significant based on the student’s two-tailed
paired t-test within a confidence interval of %97. CF as a heuristic selection mechanism
performs slightly better than the rest of the heuristic selection mechanism with an average
success rate of 0.78 over all experiments. The rest of the heuristic selection methods have
comparable performances. The CF_G-VOT hyperheuristic performs the best with an
average success rate of 0.92 over all benchmark functions, beating the performance of each
member hyperheuristic when used as a single approach. CF_IE, CF_GD and CF_MC
hyperheuristics generate an average success rate of 0.69, 0.88 and 0.91, respectively.
CF_G-VOT achieves a success rate that is greater or equal to 0.96 for F4, F6 and F10
functions. Full success is obtained in locating the global optimum for all functions,
excluding F13 during the runs. This hyperheuristic is obviously susceptible to deception.
The global optimum is not found for Goldberg’s deceptive function (F13) in none of the
runs. On the other hand, G-AND locates the global optimum for F13 at least for once

during the runs when combined with any heuristic selection method.

Table 4.3. Performance of each group decision making hyperheuristic over benchmark

functions based on success rate. “G-" prefix is omitted from the names of the acceptance

criteria.

label SR_AND SR_OR SR_PVO SR_VOT RD_AND RD_OR RD_PVO

F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F3 1.00 0.84 1.00 1.00 1.00 0.84 1.00
F4 0.24 0.52 0.80 0.92 0.14 0.26 0.54
F5 0.90 1.00 1.00 1.00 0.02 1.00 1.00
F6 1.00 0.00 0.96 1.00 1.00 0.02 1.00

F7 1.00 0.74 1.00 1.00 1.00 0.92 1.00
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F8 0.06 1.00 1.00 1.00 0.04 1.00 1.00
F9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F10 1.00 0.88 0.96 1.00 1.00 0.88 0.94
F11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F12 1.00 0.00 1.00 1.00 1.00 0.00 1.00
F13 0.02 0.00 0.00 0.00 0.00 0.00 0.00
F14 1.00 0.46 1.00 1.00 1.00 1.00 1.00
avr. 0.66 0.53 0.77 0.78 0.59 0.57 0.75
std. 0.46 0.44 0.42 0.42 0.50 0.47 0.42
label RD_VOT RP_AND RP_OR RP_PVO RP_VOT RPD_AND RPD_OR

F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F3 1.00 1.00 0.76 1.00 1.00 1.00 0.56
F4 0.52 0.20 0.50 0.84 0.84 0.18 0.68
F5 0.94 0.98 1.00 1.00 1.00 0.96 1.00
F6 1.00 1.00 0.00 0.96 1.00 1.00 0.00
F7 1.00 1.00 0.70 1.00 1.00 1.00 0.52
F8 1.00 0.08 1.00 1.00 1.00 0.02 1.00
F9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F10 1.00 1.00 0.94 0.96 1.00 1.00 0.96
F11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F12 1.00 1.00 0.00 1.00 1.00 1.00 0.00
F13 0.00 0.04 0.00 0.00 0.00 0.04 0.00
F14 1.00 1.00 0.10 1.00 1.00 1.00 0.08
avr. 0.75 0.66 0.50 0.77 0.77 0.66 0.49
std. 0.42 0.47 0.46 0.42 0.42 0.47 0.45
label RPD_PVO RPD_VOT CF_AND CF OR CF_PVO CF_VOT GR_AND

F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F2 0.00 0.04 0.00 1.00 1.00 1.00 0.00
F3 1.00 1.00 1.00 0.78 1.00 1.00 1.00
F4 0.84 0.84 0.54 0.64 0.92 0.96 0.16
F5 1.00 1.00 1.00 1.00 1.00 1.00 0.90
F6 0.84 1.00 1.00 0.04 0.48 0.96 1.00
F7 1.00 1.00 1.00 0.50 1.00 1.00 1.00
F8 1.00 1.00 0.04 1.00 1.00 1.00 0.12
F9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F10 0.92 1.00 1.00 0.96 0.92 0.98 1.00
F11 0.00 0.00 0.02 1.00 1.00 1.00 0.00
F12 1.00 1.00 1.00 0.00 1.00 1.00 1.00



37

F13 0.00 0.00 0.00 0.00 0.00 0.00 0.02
F14 1.00 1.00 1.00 0.00 1.00 1.00 1.00
avr. 0.76 0.78 0.69 0.64 0.88 0.92 0.66
std. 0.41 0.42 0.46 0.44 0.29 0.27 0.46
label GR OR  GR PVO GR VOT TABU AND TABU OR TABU PVO TABU_VOT
F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F2 0.00 0.00 0.00 0.00 0.02 0.06 0.12
F3 1.00 1.00 1.00 1.00 0.54 1.00 1.00
F4 0.36 0.26 0.26 0.14 0.78 0.86 0.86
F5 0.88 0.88 0.90 0.98 1.00 1.00 1.00
F6 1.00 1.00 1.00 1.00 0.00 0.70 0.98
F7 1.00 1.00 1.00 1.00 0.18 1.00 1.00
F8 0.14 0.12 0.12 0.06 1.00 1.00 1.00
F9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F10 1.00 1.00 1.00 1.00 0.90 0.88 1.00
F11 0.04 0.00 0.00 0.00 0.00 0.06 0.00
F12 1.00 1.00 1.00 1.00 0.00 1.00 1.00
F13 0.04 0.02 0.00 0.08 0.00 0.00 0.00
F14 1.00 1.00 1.00 1.00 0.08 1.00 1.00
avr. 0.68 0.66 0.66 0.66 0.46 0.75 0.78
std. 0.44 0.46 0.46 0.47 0.46 0.40 0.41

The same trials with all the decision making hyperheuristics are repeated using the
most successful framework Fc (Ozcan, Bilgin and Korkmaz (2007)) instead of the
traditional one in the second set of experiments. The results show that almost in all cases,
group decision making hyperheuristics when used in the Fc framework generates a better
performance. Figure 4.1 illustrates an overall evaluation. Although G-AND turns out to be
the best, its performance variation is not significant as compared to G-PVO and G-VOT.
G-OR in the Fc framework worsens. As a result, it is observed that majority towards an
agreement of acceptance is more valuable among the group members. The heuristic
selection methods starting from the one having the best performance to the worst is GR,
CF, TABU, RPD, SR, RP and RD, respectively. The best performing hyperheuristic from
the previous set of experiments CF-G_VOT improved its success rate from 0.92 to 0.99 by
this framework modification. The hyperheuristics GR_G-PVO and GR_G-VOT when used
in the Fc framework generate full success (1.00) over all benchmark functions. It is

reported in Ozcan, Bilgin and Korkmaz (2008) that the best performing memetic algorithm



38

has generated full success in locating the global optimum in each benchmark function.
CF_IE in Fc has generated a slightly worse performance as compared to the MA, yet the
difference is reported to be statistically insignificant. It is observed that the performances
of GR_G-PVO and GR_G-VOT turn out to be entirely comparable to the memetic

w7 -
R R B A
0.40 % / / /*
4 = B B &

Figure 4.1. Average success rate of each group decision making acceptance mechanism
over all benchmark function experiments when used within the traditional hyperheuristic

framework (Fa) and the Fc framework.
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5. EXAMINATION TIMETABLING

5.1. Introduction

In timetabling problems, an optimal schedule is searched for a given set of events
and resources subject to a set of constraints. Two different types of constraints are
identified: hard and soft constraints. Hard constraints are required to be satisfied, while
soft constraints represent the preferences that should be resolved as many as possible. The
solutions in which no hard constraints are violated are called feasible. The size of the
search space for a timetabling problem might increase exponentially as the number of
items to be scheduled increases. Moreover, the search landscape might contain many
infeasible regions due to the constraints. Timetabling problems are known to be NP-
complete constraint optimization problems (Even, Itai and Shamir (1976)). Hence, an
optimal solution might not be obtained by a traditional approach. Many researchers have
been employing many different non-standard methods to solve many different type of
timetabling problems (Burke and Petrovic (2002)). In this paper, an examination
timetabling problem is used as a case study for testing the performance of group decision

making hyperheuristics.

5.2.  Literature Survey

The first studies started with some computer based strategies for examination
timetabling, developed by Cole (1964) and Broder (1964). Then, Wood (1968) designed a
large university examination timetabling system. Foxley and Lockyer (1968) provided a
strategy to solve examination timetabling problems of some specific universities. In 1967,
Welsh and Powell gave a new direction to timetabling research by using graph colouring
methods as a solution method. Wood (1969) provided a comprehensive paper that pointed
out the similarities of scheduling and graph colouring, then applied a graph colouring
based approach for solving large timetabling problems. Carter (1986) provided a survey on
real-world applications of timetabling in different universities and described how to design
specific timetabling algorithms for each institution separately. In Arani and Lotfi (1989)
proposed a three-phase approach that included assigning final exams into separate blocks,



40

assigning the blocks into days and optimizing the relationship between the blocks and the
days. Then, Lotfi and Cerveny (1991) modified this approach by adding fourth phase of

assigning final exams into classrooms in an efficient way.

Carter, Laporte and Lee (1996) applied different heuristic orderings based on graph
colouring, since, Leighton (1979) showed that the timetabling problem can be reduced to a
graph colouring problem. Moreover, Carter provided some widely used benchmark data to
analyze any timetabling optimization algorithms. Burke, Newall, and Weare (1995) and
Burke et al. (1996) applied a light or a heavy mutation, randomly selecting one mutation
operator which is followed by a hill-climbing among them. Marin (1998) provided
constraint satisfaction strategies combined with genetic algorithms for solving examination
timetabling problems. Burke and Newall (1999), proposed an effective use of evolutionary
algorithms by dividing a large-scale problem into smaller instances and solving these
instances, separately. Gaspero and Schaerf (2000) tested some tabu search based
algorithms with graph colouring heuristics and provided some experimental results in a
comprehensive manner considering the previous works (Burke, Newall and Weare (1995),
Carter, Laporte and Lee (1996), Burke and Newall (1999)) on the same set of examination
timetabling data. Paquete and Fonseca (2001) designed a multi-objective evolutionary
algorithm (MOEA) based on a direct encoding of the mapping between exams and time
slots. The approach attempted to minimize the number of violations of each type of
constraints as separate objectives. Wong, Coté and Gely (2002) used a genetic algorithm
with a non-elitist replacement strategy to solve a single examination timetabling problem at
Ecole de Technologie Supérieure. In their algorithm, genetic operators were applied to an
individual first, and then the violations were fixed using a hill-climbing approach. Merlot
et al. (2002) proposed a new hybrid algorithm which involved three phases; programming,
simulated annealing and hill-climbing. Petrovic, Yang and Dror (2003, 2007) introduced a
case based reasoning system to generate initial solutions to be used by a great deluge
algorithm. Burke and Newall (2004) proposed a general and fast adaptive method that
arranges the heuristic to be used for ordering exams to be scheduled next. Their algorithm
produced comparable results on a benchmark of problems with the current state of the art.
Asmuni, Burke and Garibaldi (2004) used a fuzzy expert system with some combinations
of ordering criteria based on fuzzy weights of exams. Abdullah et al. (2004) proposed a

solution improvement technique to make an efficient search over a large set of
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neighbourhood solutions. Ozcan (2005) proposed a new XML data format which is based
on MathML for representing timetabling problems and their solutions. Ozcan and Ersoy
(2005) generalized their previous study in Alkan and Ozcan (2003) and proposed an
extended framework for designing violation directed adaptive operators. These operators
perform a search over the constraint oriented neighbourhoods. A memetic algorithm
utilizing such a hill-climber is implemented as a problem solver in a tool called FES. FES
is the first tool that supports timetabling markup language (TTML) and accepts input in
that format. Petrovic, Patel and Yang (2005) and Asmuni et al. (2006) used fuzzy
reasoning for examination timetabling. In Bilgin, Ozcan and Korkmaz (2006) tested a set
of hyperheuristics that combine heuristic selection and move acceptance mechanisms over
a set of examination timetabling benchmark problems. Eley (2006) provided a detailed
performance comparison of two ant colony based approaches called Max-Min and
ANTCOL for solving examination timetabling problems. Cheong, Tan and Veeralli (2007)
presented a multi-objective evolutionary algorithm (MOEA) that aims to generate feasible
exam timetables without any prior knowledge of timetable length. Qu and Burke (2007)
worked on an adaptive decomposition approach to divide any given examination
timetabling problem into two different sets called difficult set and easy set, under an
ordering mechanism and a construction strategy to combine small parts of the solutions
into one. Tounsi and Ouis (2008) proposed a mechanism which is available for
diversification using local search algorithms for constraint satisfaction and optimization
problems. The operation of escaping from local optima applied onto a real world
examination timetabling data set belongs to a French engineering school, Ecole des Mines

de Nantes.

5.3. Examination Timetabling Problem

In the real-world examination timetabling problems, the constraints might change
from one institution to another. More on exam examination timetabling, such as, their
formulations and approaches can be found in the survey provided by Qu et al. (2006). In
this study, the formulation from the examination timetabling problem at Yeditepe
University Faculty of Architecture and Engineering is used. Hard constraints can be listed
as:

- each examination should be scheduled just for once (Equation (5.1)),
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- if a student takes more than one exam, then these exams must be assigned to

different time periods (Equation (5.2)),

- total number of students taking exams at a time period is not allowed to exceed a
seating capacity (Equation (5.3)).

The only soft constraint in this problem is leaving at least one empty slot for the

students who have more than one examination in the same day (Equation (5.4)).

M
vjizaij =1 (5.1)
i1

1 ifj"exam is in i" period

where M is the number of periods and &ij = {O else

N i1
Vi, Y a; > 8¢, =0 (5.2)
k=1

=2 k=
where N is the number of exams and cj is the number of students taking both exams j and

k
] N
VI,Zaijbj <C (5.3)
j=1
where C is the seating capacity and bj is the number of students taking examination j

N N
Vi, if i is not the last period in the day, > a; > a;,;,C; =0 (5.4)

=1 k=1
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6. GROUP DECISION MAKING HYPERHEURISTICS FOR
EXAMINATION TIMETABLING

6.1. Experimental Data and Settings

Direct encoding is used that represents the mapping of each examination to a
period. Hence, the constraint denoted by Equation (5.1) is explicitly satisfied. During the
optimization process, candidate solutions are evaluated using Equation (6.1). The
evaluation function computes the weighted average of constraint violations. A value
calculated using the evaluation function will be referred to as fitness value in the rest of the
paper. The evaluation function is multiplied by -1 to convert the problem into a
minimization problem. In the evaluation function, 0.4 is used as the weight for the
constraints denoted by Equations 4 and 5 and 0.2 for the constraint denoted by Equation
(6.1).

-1
VA = S (6.1)

where T is a candidate solution, w; indicates the weight associated with the i

constraint, vi indicates the number of constraint violations in T due to the i"" constraint.

Experiments are performed on Carter (Carter (1996)) and Yeditepe University,
Faculty of Architecture and Engineering data sets (Ozcan and Ersoy (2005)) (Table 6.1).
During the experiments, Pentium IV 3 GHz LINUX machines having 2 Gb memories are

used. Fifty runs are performed during each test on a benchmark function.

Table 6.1. Properties and parameters of the examination timetabling problem instances

used in the experiments.

Instance Exams Students Enrollment Density Days Capacity
Carf92 543 18419 54062 0.14 12 2000
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Cars91 682 16925 59022 0.13 17 1550
Earf83 190 941 6029 0.27 8 350
Hecs92 81 2823 10634 0.20 6 650
Kfus93 486 5349 25118 0.06 7 1955
Lsefol 381 2726 10919 0.06 6 635
Purs93 2419 30032 120690 0.03 10 5000
Ryes93 486 11483 45051 0.07 8 2055
Staf83 139 611 5539 0.14 4 3024
Tres92 261 4360 14901 0.18 10 655
Utas92 622 21267 58981 0.13 12 2800
Utes92 184 2749 11796 0.08 3 1240
Yorf83 181 1125 8108 0.29 7 300
Yue20011 140 559 3488 0.14 6 450
Yue20012 158 591 3706 0.14 6 450
Yue20013 30 234 447 0.19 2 150
Yue20021 168 826 5757 0.16 7 550
Yue20022 187 896 5860 0.16 7 550
Yue20023 40 420 790  0.19 2 150
Yue20031 177 1125 6716 0.15 6 550
Yue20032 210 1185 6837 0.14 6 550

6.2. Hyperheuristic Patterns used During Examination Timetabling Experiments

The same experimental settings are used from the benchmark function experiments
during the evaluation of twenty eight decision making hyperheuristics that is a combination
of heuristic selection methods {SR, RD, RP, RPD, CF, GR, TABU} by move acceptance
strategies {G-AND, G-OR, G-VOT, G-PVO}. Similarly, IE, SA and GD are the members

in all groups. The traditional hyperheuristic framework is used.

6.3. Heuristics for Examination Timetabling Problem

Four different mutational heuristics are implemented; RANDSC, TOURCI,
TOURC2 and TOURCS3. The last three heuristics aim to prevent each specific constraint
type conflict by searching constraint oriented neighbourhoods, while the former one
employs random perturbation(s). RANDSC scans a candidate solution and might reassign
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an examination to a randomly chosen time slot with a probability of (1/number of exams).
TOURCI1-3 employ a tournament based strategy while deciding the examination to
reschedule at each step. TOURC1, TOURC2 and TOURCS3 heuristics attempt to repair the
violations of constraints denoted by Equations 5.1, 5.2 and 5.3, respectively. Each one of
these heuristics performs a directed search aiming a possible improvement for a specific
constraint type, yet they are not hill climbers. Improving a constraint type does not
guarantee an overall improvement, since other violations might arise due to the other
constraint types. TOURC1 and TOURCS3 select a number of exams and count the number
of conflicts due to the corresponding constraint type. A tournament is arranged based on
the number of conflicts and the examination with the highest number of conflicts is
selected for rescheduling. The examination is assigned to a period from a randomly
selected subset of periods that produces the minimum number of conflicts due to the
constraint type in question. TOURC2 employs two tournament stages successively. At
first, a subset of periods is selected and the capacity violations at each period are measured.
After the tournament, the set of exams at the period that causes the maximum number of
conflicts is processed. A subset of these exams with a predetermined size is passed through
the second tournament process. At the end of this process, the examination with the
maximum number of students is rescheduled. This examination is assigned to a period
from a randomly selected subset of periods that contains the minimum number of seated

students.

6.4. Experimental Results and Comparisons

Proposed group decision making based hyperheuristics are tested over all
examination timetabling benchmark problem instances. To make a fair performance
comparison and determine significant performance variance, t-test with the conficence
interval of 95% is applied. As another methodology to compare the hyberheuristics based
on their experimental results, ranking is used for 1 through 4 for each problem instances.
Here, 1 indicates that the corresponding hyperheuristic generates the best average fitness
over fifty runs as provided in Table 6.2. The move acceptance methods that do not
generate significant performance variances over fifty runs are grouped together and the
same rank that takes ties into account is assigned to them. Remembering that the traditional

framework is used during the experiments, a similar result is obtained for the online
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performance of the group decision making strategies as in the benchmark functions. G-

VOT becomes the best acceptance mechanism considering the average rank over all
problems, while G-PVO, G-AND and G-OR follows it in that order, respectively as

illustrated in Figure 6.1.

Table 6.2. Performance comparison of the group decision making hyperheuristics over

benchmark functions based on rankings. “G-" prefix is omitted from the names of the

acceptance criteria.

label SR AND SR OR SRPVO SR VOT RDAND  RDOR RD_PVO
Carf92 2.50 4.00 2.50 1.00 2.00 4.00 2.00
Cars91 2.00 4.00 3.00 1.00 2.00 4.00 3.00
Earf83 3.00 4.00 1.50 1.50 3.00 4.00 1.00
Hecs92 3.00 4.00 1.50 1.50 3.00 4.00 1.00
Kfus93 3.00 4.00 2.00 1.00 3.00 4.00 2.00
Lsefo1 3.00 4.00 2.00 1.00 3.00 4.00 2.00
Purs93 2.00 4.00 3.00 2.00 2.00 4.00 3.00
Ryes93 3.00 4.00 2.00 1.00 3.00 4.00 2.00
Staf83 3.00 4.00 1.00 2.00 3.00 4.00 1.50
Tres92 3.00 4.00 2.00 1.00 3.00 4.00 2.00
Utas92 2.00 4.00 3.00 1.00 2.00 4.00 3.00
Utes92 3.00 4.00 1.00 2.00 3.00 4.00 1.00
Yorfs3 3.00 4.00 2.00 1.00 3.00 4.00 1.00
Yue20011 3.00 4.00 2.00 1.00 3.00 4.00 2.00
Yue20012 3.00 4.00 2.00 1.00 3.00 4.00 2.00
Yue20013 3.00 3.00 1.00 1.00 4.00 3.00 1.00
Yue20021 3.00 4.00 2.00 1.00 3.00 4.00 2.00
Yue20022 3.00 4.00 1.50 1.50 3.00 4.00 1.50
Yue20023 4.0 3.00 1.00 2.00 4.00 2.00 1.00
Yue20031 3.00 4.00 1.50 1.50 3.00 4.00 1.50
Yue20032 3.00 4.00 1.00 1.00 2.50 4.00 1.00
avr. 2.88 3.90 1.83 1.29 2.88 3.86 1.74
std. 0.44 0.30 0.66 0.41 0.55 0.48 0.68
label RD VOT RP_AND RP OR RP PVO RP VOT RPD AND  RPD OR
Carf92 1.00 3.00 4.00 2.00 1.00 2.50 4.00
Cars91 1.00 2.00 4.00 3.00 1.00 2.00 4.00
Earf83 2.00 3.00 4.00 1.50 1.50 3.00 4.00
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Hecs92 3.00 3.00 4.00 1.00 2.00 3.00 4.00
Kfus93 1.00 3.00 4.00 2.00 1.00 3.00 4.00
Lsef91 1.00 3.00 4.00 2.00 1.00 3.00 4.00
Purs93 1.00 1.50 4.00 3.00 1.50 2.00 4.00
Ryes93 1.00 3.00 4.00 2.00 1.00 3.00 4.00
Staf83 1.50 3.00 4.00 1.00 2.00 3.00 4.00
Tres92 1.00 3.00 4.00 2.00 1.00 3.00 4.00
Utas92 1.00 2.00 4.00 3.00 1.00 2.00 4.00
Utes92 2.00 3.00 4.00 1.00 2.00 3.00 4.00
Yorfs3 2.00 3.00 4.00 2.00 1.00 3.00 4.00
Yue20011 1.00 3.00 4.00 2.00 1.00 3.00 4.00
Yue20012 1.00 3.00 4.00 2.00 1.00 3.00 4.00
Yue20013 4.0 3.00 4.00 1.00 2.00 3.00 4.00
Yue20021 1.00 3.00 4.00 2.00 1.00 3.00 4.00
Yue20022 1.50 3.00 4.00 1.50 1.50 3.00 4.00
Yue20023 3.00 4.00 3.00 1.00 2.00 4.00 3.00
Yue20031 1.50 3.00 4.00 1.50 1.50 3.00 4.00
Yue20032 2.50 3.00 4.00 1.00 2.00 3.00 4.00
avr. 1.62 2.88 3.95 1.79 1.38 2.88 3.95
std. 0.86 0.50 0.22 0.66 0.44 0.44 0.22
label RPD_PVO RPD_VOT CF AND  CF OR CF PVO CFVOT  GRAND
Carf92 2.50 1.00 2.50 4.00 2.50 1.00 3.00
Cars91 3.00 1.00 2.00 4.00 3.00 1.00 2.00
Earf83 1.50 1.50 3.00 4.00 1.50 1.50 3.00
Hecs92 1.00 2.00 3.00 4.00 1.00 2.00 3.50
Kfus93 2.00 1.00 3.00 4.00 2.00 1.00 3.00
Lsef91 2.00 1.00 3.00 4.00 2.00 2.00 3.00
Purs93 3.00 1.00 2.00 4.00 3.00 2.00 3.00
Ryes93 2.00 1.00 2.50 4.00 2.50 1.00 3.00
Staf83 1.00 2.00 3.00 4.00 1.00 2.00 3.00
Tres92 2.00 1.00 3.00 4.00 2.00 1.00 3.00
Utas92 3.00 1.00 2.00 4.00 3.00 1.00 3.00
Utes92 1.00 2.00 3.00 4.00 1.00 2.00 4.00
Yorfs3 2.00 1.00 3.00 4.00 2.00 2.00 3.00
Yue20011 2.00 1.00 3.00 4.00 2.00 1.00 3.00
Yue20012 2.00 1.00 3.00 4.00 2.00 1.00 3.00
Yue20013 1.00 2.00 3.00 4.00 1.00 2.00 4.00
Yue20021 2.00 1.00 3.00 4.00 2.00 2.00 3.00

Yue20022 1.50 1.50 3.00 4.00 1.50 1.50 3.00
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Yue20023 1.00 2.00 4.00 3.00 1.00 3.00 4.00
Yue20031 1.50 1.50 3.00 4.00 1.50 1.50 3.00
Yue20032 1.00 2.00 3.00 4.00 1.00 2.00 4.00
avr. 1.81 1.36 2.86 3.95 1.83 1.60 3.17
std. 0.68 0.45 0.45 0.22 0.70 0.56 0.48
label GR_OR  GR_PVO GR_VOT TABU_AND TABU_OR TABU_PVO TABU_VOT
Carf92 4.00 2.00 1.00 3.50 4.00 3.50 2.00
Cars91 4.00 3.00 1.00 2.00 4.00 4.00 2.00
Earf83 4.00 1.00 1.00 3.00 4.00 1.50 1.50
Hecs92 3.50 1.00 1.00 3.00 4.00 2.00 3.00
Kfus93 4.00 2.00 1.00 3.00 4.00 3.00 2.00
Lsef91 4.00 1.00 1.00 3.00 4.00 3.00 2.00
Purs93 4.00 1.00 1.00 2.00 4.00 4.00 2.00
Ryes93 4.00 1.50 1.50 3.00 4.00 4.00 2.00
Staf83 4.00 1.00 1.00 3.00 4.00 1.50 1.50
Tres92 4.00 2.00 1.00 3.00 4.00 4.00 2.00
Utas92 4.00 2.00 1.00 2.00 4.00 4.00 2.00
Utes92 3.00 1.00 2.00 3.00 4.00 2.00 2.00
Yorf83 4.00 1.50 1.50 3.00 4.00 4.00 2.00
Yue20011 4.00 2.00 1.00 3.00 4.00 3.00 2.00
Yue20012 4.00 2.00 1.00 3.00 4.00 4.00 2.00
Yue20013 3.00 1.00 2.00 3.00 4.00 1.00 2.00
Yue20021 4.00 1.50 1.50 3.00 4.00 3.00 1.00
Yue20022 4.00 1.00 1.00 3.00 4.00 1.50 1.50
Yue20023 2.00 1.00 2.00 4.00 4.00 2.00 3.00
Yue20031 4.00 1.50 1.50 3.00 4.00 3.00 2.00
Yue20032 3.00 1.00 2.00 3.00 4.00 2.00 2.00
avr. 3.74 1.48 1.29 2.93 4.00 2.86 1.98
std. 0.54 0.56 0.41 0.46 0.00 1.04 0.43
avr. rank
0

4.00

3.00

2.00 L ;

1.00 .

0.00

G-AND G-OR G-PVO G-VOT
acceptance mechanism
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Figure 6.1. Average rank of each group decision making move acceptance mechanism

over all examination timetabling experiments provided in Table 6.2.

In order to evaluate the offline performance of the approaches, twenty eight
hyperheuristics are ranked from 1 to 28 considering the best fitness produced in fifty runs
for each problem, where 1 indicates that the corresponding hyperheuristic provides the best
value. Figure 6.2 illustrates six hyperheuristics that deliver a better average performance
that are statistically significant considering the ranks as compared to the rest, namely;
GR_G-VOT, TABU_G-VOT, RP_G-VOT, GR_G-PVO, SR _G-VOT and CF_G-VOT.
GR_G-VOT has the best performance.
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SR G-VOT RP_G-VOT CF G-VOT GR G-PVO GR G-VOT TABU G-VOT
hyper-heuristics

Figure 6.2. Average rank of group decision making hyperheuristics that generate
statistically significant performance variance from the rest over all examination timetabling

problems.

The average best fitness value and its standard deviation of the best performing
heuristic selection-acceptance criterion combination(s) among the top six group decision
making hyperheuristics (see Figure 6.2) for each benchmark problem instance are provided
in Table 6.3. Moreover, a comparison to a previous study (Bilgin, Ozcan and Korkmaz
(2006)) is presented over the same data set. Hyperheuristics utilizing multiple move
acceptance criteria under decision making models generated a superior performance as
compared to the hyperheuristics where each utilizes a single move acceptance method
within. This performance variation is statistically significant. In eleven out of the twenty

one problems, hyperheuristics utilizing VOT and PVO delivers the best performances.
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Moreover, at least one of the top six group decision making hyperheuristic provide a

matching performance to the previous best hyperheuristics for the rest of the problems.

Table 6.3. Comparison of the previous results obtained in Bilgin, Ozcan and Korkmaz
(2006) and the current results obtained during this study. Bold entries mark the best
performing hyperheuristic. If a group decision making hyperheuristic delivers a
statistically significant performance, it appears in the “Current” column. “+” indicates that
all hyperheuristics in {GR_G-VOT, TABU_G-VOT, RP_G-VOT, GR_G-PVO, SR_G-
VOT, CF_G-VOT} has similar performance. “\” excludes the hyperheuristic from this set

(Y324

that is displayed afterwards. shows that there is at least one group decision making
hyperheuristic that has a matching performance to the one that appears in the “Previous”
column. The hyperheuristics that have a similar performance to the bold entry are

displayed within parentheses.

Instance (Av. B. Fit., Std. Dev.) Current Previous
Carf92 (-1.85E-02, 1.54E-03) GR_G-VOT+ TABU_IE
Cars91 (-5.73E-01, 2.02E-01) GR_G-VOT+\ GR_G-PVO TABU_IE
Earf83 (-7.35E-03, 4.38E-04) GR_G-PVO (GR_G-VOT) CF_MC
Hecs92 (-2.66E-02, 4.97E-03) GR_G-PVO (GR_G-VOT, SR_G-VOT, TB_G-VOT) CF_MC
Kfus93 (-4.45E-02, 3.26E-03) - SR_GD
Lsefol (-1.61E-02, 1.88E-03) GR_G-PVO+ CF_MC
Purs93 (-1.63E-03, 9.71E-05) GR_G-PVO (SR_G-VOT) SR_IE
Ryes93 (-1.53E-02, 2.25E-03) TABU_G-VOT+ CF_MC
Staf83 (-2.68E-03, 1.45E-05) - SR_MC
Tres92 (-1.31E-01, 2.49E-02) - SR_GD
Utas92 (-2.55E-02, 1.75E-03) GR_G-VOT+ GR_G-PVO TABU_IE
Utes92 (-2.27E-03, 7.63E-05) GR_G-PVO CF_MC
Yorf83 (-9.07E-03, 5.84E-04) GR_G-PVO+ CF_MC
Yue20011 (-1.09E-01, 1.19E-02) - SR_GD
Yue20012 (-9.42E-02, 9.33E-03) - SR_GD
Yue20013 (-2.50E-01, 0.00E+00) - SR_MC
Yue20021 (-4.07E-02, 6.02E-03) - SR_GD
Yue20022 (-1.31E-02, 1.11E-03) GR_G-PVO CF_MC
Yue20023 (-1.55E-02, 1.34E-04) GR_G-PVO CF_MC
Yue20031 (-1.66E-02, 1.99E-03) GR_G-PVO (GR_G-VOT, SR_G-VOT) CF_MC
Yue20032 (-5.02E-03, 4.13E-04) - CF_MC
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In the following table, minimum number of conflicts belongs to hard and soft
constraints that could not be solved for Carter’s benchmark data for the best
hyperheuristics with group decision making strategies based on their best fitness values are
provided. Our approaches solved all the constraints only for Cars91 data, the rest of them
have some conflicts that were not handled, yet. On the other hand, when we look at the
constraints separately, we can see that all the constraints except the hard constraint of
Exam Conflict are satisfied at least for one time for the examination timetabling data

excluding Cars91.

Our aim of this study is to see the effect of group decision making strategies in
hyperheuristics and compare their performances. We are not trying to beat the state of the
art approaches. In addition, our problem formulation is based on the examination
timetabling problem at Yeditepe University; hence the quality of resulting timetables can
not be compared to the previous studies.

Table 6.4. Number of conflicts for hard and soft constraints. Numbers in paranthesis are
the best (minimum) values among all experimented hyperheuristics (Hard constraint about
number of occurrences for each exam is not provided in the table, since, it is solved

directly because of the representation that we used)

Instance Hyperheuristic Capacity Exam Conf/ict Empty Slot
Carf92 GR_G-VOT 0 67 56 (50)
Cars91 GR_G-VOT 0 0 0
Earf83 GR_G-VOT 0 96 354
Hecs92 GR_G-VOT 0 37 39
Kfus93 GR_G-VOT 0 44 0
Lsef9l TABU_G-VOT 0 34 148
Purs93 GR_G-PVO 0 834 861
Ryes93 TABU_G-VOT 0 61 (47) 50
Staf83 GR_G-PVO 0 429 314 (228)
Tres92 GR_G-VOT 0 1 9
Utas92 GR_G-VOT 0 79 0
Utes92 GR_G-PVO 633 53 503

Yorf83 GR_G-PVO 0 62 246
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7. CONCLUSION AND REMARKS

Simple hyperheuristics combine a heuristic selection method that manages a set of
low level heuristics and a move acceptance mechanism in an iterative cycle for search and
optimization. Bilgin, Ozcan, Korkmaz (2006) and Ozcan, Bilgin, Korkmaz (2008) show
that the move acceptance mechanism might be more influential over the performance
compared to the heuristic selection mechanism in a simple hyperheuristic. This
phenomenon might be due to the use of a small set of low level heuristics. As the number
of low level heuristics used by a simple hyperheuristic increases, it is expected that the
heuristic selection component will become more imperative. Focusing back to the move
acceptance stage, it is also observed that different move acceptance methods might
perform better on different problems. In this study, group decision making acceptance
methods that utilize multiple move acceptance strategies are proposed to relieve the
difficulty of choosing a move acceptance method to be used within a hyperheuristic for
solving a problem. The experimental results show that the majority rule based acceptance
methods can improve the performance significantly in some problems. Voting and the
probabilistic voting scheme that dynamically computes the acceptance probability based on
the votes of group members generate the most successful acceptance mechanisms to be
used within the hyperheuristics. It is still observed that, if the mutational and hill climbing
heuristics can be distinguished and implemented separately for solving a problem, then an
additional improvement can be obtained by using the memetic hyperheuristic framework
as proposed in Ozcan, Bilgin and Korkmaz (2006). For some problems, this improvement
is comparable to the meta-heuristics, such as, memetic algorithms. Group decision making
methods have the potential to generate a synergy in between member acceptance
mechanisms yielding a better performance. Proposed group decision making mechanisms
can be extended to combine different acceptance mechanisms as group members, hence

new group decision making hyperheuristics can be generated.

Considering the performance of heuristic selection mechanisms over the benchmark
problems, GR seems to perform the best. GR does not utilize any learning mechanism. In
different regions of the search space, a different heuristic might operate the best. A good

hyperheuristic is expected to recover the most appropriate heuristic to utilize in a given
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region as rapid as possible. GR employs all heuristics to the same candidate solution
simultaneously and selects the best one. It seems that this mechanism allows GR to react
faster to the transitions from one region to another. As the number of low level heuristics
increase for solving a problem, it is expected that the learning mechanisms exploited by the
heuristic selection methods will become more useful. Moreover, RP, RPD and GR
heuristic selection methods might become impractical to be used in case of large set of low
level heuristics. Ersoy, Ozcan and Uyar (2007) proposed a simple modification of GR that
randomly selects a subset of low level heuristics and chooses the one from this subset
which generates the best result. This hyperheuristic did not perform well, possibly, because
it was used as a mechanism for managing hill climbers only. Moreover, instead of a
random heuristic selection, a more informed decision could have been made. Hence, there
is still a potential to incorporate a learning mechanism within GR to improve its

performance further.
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APPENDIX A: EXPERIMENTAL RESULTS TABLES OF
HYPERHEURISTICS PATTERNS ON BENCHMARK FUNCTIONS

For 14 mathematical benchmark functions, on following 14 tables, Best Fitness,
Average Best Fitness and Average Number of Evaluations per Execution values are
provided for experiments that are performed on FA framework with 28 different
hyperheuristics. The hyperheuristics comes from 7 heuristic selection mechanisms which
are SR, RD, RPER, RPD, CF, GR, TABU and 4 move acceptance strategies that |
proposed as group decision making methods, G-AND,G- OR, G-PVO, G-VOT. Also,
related standard deviation values added to the tables and they are added as second column
for Avg. Best Fit. And Avg. Num. of Eval. sub-sections.

Table A.1. Results of performance evaluations of hyperheuristic patterns on Sphere

Function

Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,34E+03 | 5,92E+02 | 100.00%
SR_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,54E+03 | 7,51E+02 | 100.00%
SR_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,42E+03 | 7,03E+02 | 100.00%
SR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,59E+03 | 8,06E+02 | 100.00%
RD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,39E+03 | 6,49E+02 | 100.00%
RD_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,66E+03 | 7,23E+02 | 100.00%
RD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,51E+03 | 1,06E+03 | 100.00%
RD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,58E+03 | 8,38E+02 | 100.00%
RP_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,18E+03 | 1,96E+02 | 100.00%
RP_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,43E+03 | 3,83E+02 | 100.00%
RP_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,33E+03 | 3,21E+02 | 100.00%
RP_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,38E+03 | 3,43E+02 | 100.00%
RPD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,29E+03 | 3,26E+03 | 100.00%
RPD_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,30E+03 | 3,26E+03 | 100.00%
RPD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,38E+03 | 2,83E+03 | 100.00%
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RPD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,30E+03 | 3,26E+03 | 100.00%
CF_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,27E+03 | 2,61E+03 | 100.00%
CF_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,35E+03 | 2,66E+03 | 100.00%
CF_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,90E+03 | 2,56E+03 | 100.00%
CF_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,70E+03 | 2,75E+03 | 100.00%
GR_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,81E+03 | 0,00E+00 | 100.00%
GR_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,81E+03 | 0,00E+00 | 100.00%
GR_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,81E+03 | 0,00E+00 | 100.00%
GR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,81E+03 | 0,00E+00 | 100.00%
TABU_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,08E+03 | 2,87E+03 | 100.00%
TABU_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,03E+03 | 2,70E+03 | 100.00%
TABU_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,08E+03 | 2,97E+03 | 100.00%
TABU_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,29E+03 | 2,92E+03 | 100.00%

Table A.2. Results of performance evaluations of hyperheuristic patterns on Rosenbrock

Function

Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 8,59E-13 | 1,03E-12 | 8,96E-14 | 6,53E+08 | 1,28E6+07 | 0.00%
SR_OR 3,21E-11 | 1,78E-09 | 2,32E-09 | 6,50E+08 | 5,04E+06 | 0.00%
SR_PVO 2,69E-15 | 8,76E-12 | 1,34E-11 | 6,38E+08 | 2,30E+07 | 0.00%
SR_VOT 3,64E-15 | 4,52E-13 | 7,64E-13 | 6,56E+08 | 4,68E+06 | 0.00%
RD_AND 5,74E-03 | 7,18E+00 | 1,31E+01 | 1,77E+08 | 1,54E+05 | 0.00%
RD_OR 7,28E-11 | 9,64E-09 | 1,06E-08 | 6,34E+08 | 2,13E+05 | 0.00%
RD_PVO 1,31E-12 | 1,93E-10 | 2,02E-10 | 6,35E+08 | 4,08E+05 | 0.00%
RD_VOT 4,14E-14 | 3,19E-11 | 9,07E-11 | 6,37E+08 | 4,68E+05 | 0.00%
RP_AND 8,63E-13 | 1,04E-12 | 9,28E-14 | 6,29E+08 | 2,06E+07 | 0.00%
RP_OR 6,49E-10 | 1,17E-08 | 9,45E-09 | 6,53E+08 | 1,49E+05 | 0.00%
RP_PVO 4,50E-14 | 2,43E-11 | 5,66E-11 | 6,55E+08 | 4,36E+06 | 0.00%
RP_VOT 1,76E-15 | 1,03E-12 | 3,06E-12 | 6,61E+08 | 3,26E+05 | 0.00%
RPD_AND | g 63E-13 | 1,04E-12 | 7,65E-14 | 6,58E+08 | 1,33E+05 | 0.00%
RPD_OR 4,03E-28 | 3,02E-14 | 3,97E-14 | 6,60E+08 | 4,76E+07 | 0.00%
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RPD_PVO | 147E-15 | 1,26E-14 | 1,73E-14 | 6,83E+08 | 3,21E+07 | 0.00%
RPD_VOT | 403E-28 | 8,94E-15 | 1,03E-14 | 6,93E+08 | 3,87E+07 | 0.00%
CF_AND 7,42E-15 | 8,66E-13 | 3,70E-13 | 6,53E+08 | 1,21E+07 | 0.00%
CF_OR 4,03E-28 | 4,03E-28 | 2,72E-43 | 6,63E+08 | 1,50E+07 | 0.00%
CF_PVO 4,03E-28 | 4,03E-28 | 2,72E-43 | 6,74E+08 | 4,92E+06 | 0.00%
CF_VOT 4,03E-28 | 4,03E-28 | 2,72E-43 | 6,70E+08 | 1,56E+07 | 0.00%
GR_AND 8,29E-13 | 1,03E-12 | 7,82E-14 | 6,59E+08 | 1,64E+07 | 0.00%
GR_OR 8,29E-13 | 1,02E-12 | 9,35E-14 | 6,70E+08 | 1,93E+05 | 0.00%
GR_PVO 8,29E-13 | 1,02E-12 | 8,02E-14 | 6,64E+08 | 4,34E+06 | 0.00%
GR_VOT 7,48E-13 | 1,04E-12 | 1,01E-13 | 6,64E+08 | 1,31E+07 | 0.00%
TABU_AND | 8 42E-13 | 1,03E-12 | 8,63E-14 | 6,57E+08 | 9,74E+04 | 0.00%
TABU_OR | 403E-28 | 5,88E-15 | 4,85E-15 | 6,87E+08 | 2,44E+06 | 0.00%
TABU_PVO | 403E-28 | 3,80E-15 | 3,43E-15 | 6,86E+08 | 5,23E+06 | 0.00%
TABU_VOT | 4,03E-28 | 3,16E-15 | 2,20E-15 | 6,88E+08 | 2,25E+06 | 0.00%

Table A.3. Results of performance evaluations of hyperheuristic patterns on Step Function

Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,05E+05 | 3,78E+05 | 100,00 %
SR_OR 0,00E+00 | 1,60E-01 | 3,70E-01 | 2,23E+08 | 1,69E+08 | 84,00 %
SR_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,59E+08 | 1,11E+08 | 100,00 %
SR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,85E+08 | 1,20E+08 | 100,00 %
RD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,94E+05 | 2,27E+05 | 100,00 %
RD_OR 0,00E+00 | 1,60E-01 | 3,70E-01 | 2,43E+08 | 1,72E+08 | 84,00 %
RD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,55E+08 | 1,06E+08 | 100,00 %
RD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,88E+08 | 1,32E+08 | 100,00 %
RP_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,30E+05 | 3,28E+05 | 100,00 %
RP_OR 0,00E+00 | 2,40E-01 | 4,31E-01 | 2,03E+08 | 1,91E+08 | 76,00 %
RP_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,53E+08 | 1,45E+08 | 100,00 %
RP_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,58E+08 | 1,48E+08 | 100,00 %
RPD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,14E+05 | 3,07E+05 | 100,00 %
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RPD_OR | 0,00E+00 | 4,40E-01 | 5,01E-01 | 2,86E+08 | 1,85E+08 | 56,00 %
RPD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,60E+08 | 1,60E+08 | 100,00 %
RPD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,48E+08 | 1,43E+08 | 100,00 %
CF_AND 0,00E+00 | 0,00E+00 | 0,00E+00 | 9,71E+05 | 4,69E+05 | 100,00 %
CF_OR 0,00E+00 | 2,20E-01 | 4,18E-01 | 2,66E+08 | 1,71E+08 | 78,00 %
CF_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,56E+08 | 1,27E+08 | 100,00 %
CF_VOT 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,95E+08 | 1,18E+08 | 100,00 %
GR_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,39E+06 | 8,46E+05 | 100,00 %
GR_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,39E+06 | 8,46E+05 | 100,00 %
GR_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,36E+06 | 1,19E+06 | 100,00 %
GR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,39E+06 | 8,46E+05 | 100,00 %
TABU_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,07E+05 | 3,19E+05 | 100,00 %
TABU_OR | 0,00E+00 | 4,60E-01 | 5,03E-01 | 3,26E+08 | 1,86E+08 | 54,00 %
TABU_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,23E+08 | 1,28E+08 | 100,00 %
TABU_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,33E+08 | 1,24E+08 | 100,00 %

Table A.4. Results of performance evaluations of hyperheuristic patterns on Quartic

Function

Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 8,86E-01 | 1,33E+00 | 3,88E-01 | 3,14E+08 | 9,52E+07 | 24,00 %
SR_OR 7,19E-01 | 9,86E-01 | 1,06E-01 | 2,39E+08 | 1,33E+08 | 52,00 %
SR_PVO 8,09E-01 | 9,57E-01 | 6,11E-02 | 2,13E+08 | 1,22E+08 | 80,00 %
SR_VOT 7,59E-01 | 9,48E-01 | 6,13E-02 | 2,20E+08 | 1,03E+08 | 92,00 %
RD_AND 8,36E-01 | 1,28E+00 | 2,77E-01 | 7,52E+07 | 3,82E+07 | 14,00 %
RD_OR 7,40E-01 | 1,05E+00 | 1,08E-01 | 3,12E+08 | 8,84E+07 | 26,00 %
RD_PVO 8,31E-01 | 9,98E-01 | 6,77E-02 | 2,45E+08 | 1,04E+08 | 54,00 %
RD_VOT 7,08E-01 | 9,96E-01 | 1,05E-01 | 2,52E+08 | 8,90E+07 | 52,00 %
RP_AND 6,29E-01 | 1,38E+00 | 4,17E-01 | 2,99E+08 | 8,87E+07 | 20,00 %
RP_OR 8,08E-01 | 9,96E-01 | 7,91E-02 | 2,64E+08 | 1,16E+08 | 50,00 %
RP_PVO 7,34E-01 | 9,41E-01 | 7,65E-02 | 1,94E+08 | 1,20E+08 | 84,00 %
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RP_VOT 6,70E-01 | 9,32E-01 | 8,89E-02 | 2,20E+08 | 1,13E+08 | 84,00 %
RPD_AND | g52E-01 | 1,38E+00 | 3,95E-01 | 3,13E+08 | 1,11E+08 | 18,00 %
RPD_OR 7,60E-01 | 9,54E-01 | 8,97E-02 | 1,85E+08 | 1,30E+08 | 68,00 %
RPD_PVO | 762E-01 | 9,51E-01 | 6,89E-02 | 2,12E+08 | 1,25E+08 | 84,00 %
RPD_VOT | 820E-01 | 9,49E-01 | 5,61E-02 | 2,02E+08 | 1,19E+08 | 84,00 %
CF_AND 7,02E-01 | 1,04E+00 | 1,74E-01 | 2,43E+08 | 1,21E+08 | 54,00 %
CF_OR 7,10E-01 | 9,52E-01 | 9,42E-02 | 2,40E+08 | 1,19E+08 | 64,00 %
CF_PVO 6,87E-01 | 9,40E-01 | 6,95E-02 | 1,58E+08 | 1,11E+08 | 92,00 %
CF_VOT 6,80E-01 | 9,35E-01 | 6,17E-02 | 1,57E+08 | 1,05E+08 | 96,00 %
GR_AND 8,96E-01 | 1,30E+00 | 3,62E-01 | 3,04E+08 | 1,12E+08 | 16,00 %
GR_OR 7,81E-01 | 1,29E+00 | 4,15E-01 | 2,74E+08 | 1,27E+08 | 36,00 %
GR_PVO 8,52E-01 | 1,33E+00 | 4,01E-01 | 3,05E+08 | 1,14E+08 | 26,00 %
GR_VOT 7,09E-01 | 1,31E+00 | 4,93E-01 | 3,00E+08 | 1,18E+08 | 26,00 %
TABU_AND | g 84E-01 | 1,46E+00 | 4,76E-01 | 3,28E+08 | 9,16E+07 | 14,00 %
TABU_OR | 562E-01 | 9,44E-01 | 9,73E-02 | 1,89E+08 | 1,35E+08 | 78,00 %
TABU_PVO | 813E-01 | 9,44E-01 | 5,89E-02 | 1,82E+08 | 1,26E+08 | 86,00 %
TABU_VOT | 684E-01 | 9,35E-01 | 8,25E-02 | 2,10E+08 | 1,14E+08 | 86,00 %

Table A.5. Results of performance evaluations of hyperheuristic patterns on Foxhole

Function

Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 9,98E-01 | 9,98E-01 | 1,12E-15 | 1,93E+07 | 4,66E+07 | 90,00 %
SR_OR 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,70E+04 | 2,59E+04 | 100,00 %
SR_PVO 9,98E-01 | 9,98E-01 | 1,12E-15 | 3,03E+04 | 2,86E+04 | 100,00 %
SR_VOT 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,92E+04 | 3,25E+04 | 100,00 %
RD_AND 9,98E-01 | 1,41E+02 | 2,19E+02 | 9,08E+07 | 1,32E+07 | 2,00 %
RD_OR 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,01E+04 | 2,69E+04 | 100,00 %
RD_PVO 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,16E+04 | 1,66E+04 | 100,00 %
RD_VOT 9,98E-01 | 3,08E+01 | 1,19E+02 | 5,53E+06 | 2,20E+07 | 94,00 %
RP_AND 9,98E-01 | 9,98E-01 | 1,12E-15 | 1,14E+07 | 3,04E+07 | 98,00 %
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RP_OR 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,91E+04 | 3,32E+04 | 100,00 %
RP_PVO 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,46E+04 | 2,73E+04 | 100,00 %
RP_VOT 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,99E+04 | 3,37E+04 | 100,00 %
RPD_AND | 9 98E-01 | 9,98E-01 | 1,12E-15 | 9,70E+06 | 3,03E+07 | 96,00 %
RPD_OR 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,86E+04 | 2,39E+04 | 100,00 %
RPD_PVO | 9.98E-01 | 9,98E-01 | 1,12E-15 | 3,81E+04 | 4,13E+04 | 100,00 %
RPD_VOT | 998E-01 | 9,98E-01 | 1,12E-15 | 3,38E+04 | 4,09E+04 | 100,00 %
CF_AND 9,98E-01 | 9,98E-01 | 1,12E-15 | 8,71E+06 | 1,96E+07 | 100,00 %
CF_OR 9,98E-01 | 9,98E-01 | 1,12E-15 | 6,04E+04 | 5,78E+04 | 100,00 %
CF_PVO 9,98E-01 | 9,98E-01 | 1,12E-15 | 5,43E+04 | 6,24E+04 | 100,00 %
CF_VOT 9,98E-01 | 9,98E-01 | 1,12E-15 | 5,33E+04 | 6,13E+04 | 100,00 %
GR_AND 9,98E-01 | 9,98E-01 | 1,12E-15 | 1,63E+07 | 4,43E+07 | 90,00 %
GR_OR 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,00E+07 | 4,92E+07 | 88,00 %
GR_PVO 9,98E-01 | 9,98E-01 | 1,12E-15 | 2,00E+07 | 4,93E+07 | 88,00 %
GR_VOT 9,98E-01 | 9,98E-01 | 1,12E-15 | 1,81E+07 | 4,56E+07 | 90,00 %
TABU_AND | 9 98E-01 | 9,98E-01 | 1,12E-15 | 1,36E+07 | 3,30E+07 | 98,00 %
TABU_OR | 998E-01 | 9,98E-01 | 1,12E-15 | 6,00E+04 | 5,31E+04 | 100,00 %
TABU_PVO | 998E-01 | 9,98E-01 | 1,12E-15 | 4,98E+04 | 5,63E+04 | 100,00 %
TABU_VOT | 9.98E-01 | 9,98E-01 | 1,12E-15 | 4,93E+04 | 5,88E+04 | 100,00 %

Table A.6. Results of performance evaluations of hyperheuristic patterns on Rastrigin

Function
Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,72E+06 | 1,95E+06 | 100,00 %
SR_OR 9,95E-01 | 2,41E+00 | 6,39E-01 | 3,68E+08 | 6,80E+04 | 0,00 %
SR_PVO | 0,00E+00 | 3,98E-02 | 1,97E-01 | 3,62E+08 | 1,08E+07 | 96,00 %
SR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,47E+08 | 1,71E+07 | 100,00 %
RD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,96E+04 | 7,49E+03 | 100,00 %
RD_OR 0,00E+00 | 1,88E+00 | 5,85E-01 | 3,52E+08 | 4,07E+07 | 2,00 %
RD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,42E+08 | 9,40E+06 | 100,00 %
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RD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,24E+08 | 1,14E+07 | 100,00 %
RP_AND 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,53E+06 | 1,73E+06 | 100,00 %
RP_OR 9,95E-01 | 2,31E+00 | 8,39E-01 | 3,69E+08 | 8,99E+05 | 0,00 %
RP_PVO 0,00E+00 | 3,98E-02 | 1,97E-01 | 3,64E+08 | 9,46E+06 | 96,00 %
RP_VOT 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,50E+08 | 6,58E+06 | 100,00 %
RPD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,48E+06 | 2,30E+06 | 100,00 %
RPD_OR 9,95E-01 | 3,34E+00 | 9,80E-01 | 3,67E+08 | 6,91E+06 | 0,00 %
RPD_PVO | 0,00E+00 | 1,59E-01 | 3,68E-01 | 3,68E+08 | 5,77E+06 | 84,00 %
RPD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,55E+08 | 8,08E+06 | 100,00 %
CF_AND 0,00E+00 | 0,00E+00 | 0,00E+00 | 9,92E+06 | 3,23E+06 | 100,00 %
CF_OR 0,00E+00 | 2,91E+00 | 9,39E-01 | 3,64E+08 | 1,91E+07 | 4,00 %
CF_PVO | 0,00E+00 | 6,37E-01 | 6,89E-01 | 3,68E+08 | 1,90E+07 | 48,00 %
CF_VOT 0,00E+00 | 3,98E-02 | 1,97E-01 | 3,53E+08 | 1,37E+07 | 96,00 %
GR_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,43E+06 | 2,05E+06 | 100,00 %
GR_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,43E+06 | 2,05E+06 | 100,00 %
GR_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,42E+06 | 2,80E+06 | 100,00 %
GR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,43E+06 | 2,05E+06 | 100,00 %
TABU_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,18E+06 | 2,63E+06 | 100,00 %
TABU_OR | 9 95£-01 | 3,13E+00 | 8,06E-01 | 3,66E+08 | 2,00E+06 | 0,00 %
TABU_PVO | 0,00E+00 | 2,98E-01 | 4,61E-01 | 3,43E+08 | 3,51E+06 | 70,00 %
TABU_VOT | 0,00E+00 | 1,99E-02 | 1,41E-01 | 3,54E+08 | 1,00E+07 | 98,00 %

Table A. 7. Results of performance evaluations of hyperheuristic patterns on Schwefel

Function
Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 1,27E-04 | 1,27E-04 | 2,74E-20 | 1,01E+06 | 4,44E+05 | 100,00 %
SR_OR 1,27E-04 | 1,97E+01 | 4,37E+01 | 1,69E+08 | 1,20E+08 | 74,00 %
SR_PVO 1,27E-04 | 1,27E-04 | 2,74E-20 | 9,92E+07 | 6,80E+07 | 100,00 %
SR_VOT 1,27E-04 | 1,27E-04 | 2,74E-20 | 1,17E+08 | 6,69E+07 | 100,00 %
RD_AND 1,27E-04 | 1,27E-04 | 2,74E-20 | 1,67E+04 | 5,49E+03 | 100,00 %
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RD_OR 1,27E-04 | 2,38E+00 | 1,67E+01 | 1,11E+08 | 9,11E+07 | 92,00 %
RD_PVO 1,27E-04 | 1,27E-04 | 2,74E-20 | 6,33E+07 | 5,40E+07 | 100,00 %
RD_VOT 1,27E-04 | 1,27E-04 | 2,74E-20 | 8,43E+07 | 6,15E+07 | 100,00 %
RP_AND 1,27E-04 | 1,27E-04 | 2,74E-20 | 9,63E+05 | 4,13E+05 | 100,00 %
RP_OR 1,27E-04 | 3,55E+01 | 5,48E+01 | 1,51E+08 | 1,24E+08 | 70,00 %
RP_PVO 1,27E-04 | 1,27E-04 | 2,74E-20 | 1,16E+08 | 8,79E+07 | 100,00 %
RP_VOT 1,27E-04 | 1,27E-04 | 2,74E-20 | 1,03E+08 | 8,30E+07 | 100,00 %
RPD_AND | 127E-04 | 1,27E-04 | 2,74E-20 | 9,72E+05 | 4,39E+05 | 100,00 %
RPD_OR 1,27E-04 | 8,24E+01 | 9,70E+01 | 1,98E+08 | 1,15E+08 | 52,00 %
RPD_PVO | 127E-04 | 1,27E-04 | 2,74E-20 | 1,77E+08 | 9,55E+07 | 100,00 %
RPD_VOT | 127E-04 | 1,27E-04 | 2,74E-20 | 1,56E+08 | 9,05E+07 | 100,00 %
CF_AND 1,27E-04 | 1,27E-04 | 2,74E-20 | 3,47E+06 | 2,67E+06 | 100,00 %
CF_OR 1,27E-04 | 5,92E+01 | 5,98E+01 | 2,36E+08 | 1,07E+08 | 50,00 %
CF_PVO 1,27E-04 | 1,27E-04 | 2,74E-20 | 1,57E+08 | 9,16E+07 | 100,00 %
CF_VOT 1,27E-04 | 1,27E-04 | 2,74E-20 | 1,49E+08 | 7,31E+07 | 100,00 %
GR_AND 1,27E-04 | 1,27E-04 | 2,74E-20 | 8,62E+05 | 4,90E+05 | 100,00 %
GR_OR 1,27E-04 | 1,27E-04 | 2,74E-20 | 8,62E+05 | 4,90E+05 | 100,00 %
GR_PVO 1,27E-04 | 1,27E-04 | 2,74E-20 | 1,04E+06 | 4,17E+05 | 100,00 %
GR_VOT 1,27E-04 | 1,27E-04 | 2,74E-20 | 8,62E+05 | 4,90E+05 | 100,00 %
TABU_AND | 127E-04 | 1,27E-04 | 2,74E-20 | 1,11E+06 | 6,57E+05 | 100,00 %
TABU_OR | 127E-04 | 1,11E+02 | 6,25E+01 | 2,88E+08 | 6,99E+07 | 18,00 %
TABU_PVO | 127E-04 | 1,27E-04 | 2,74E-20 | 2,08E+08 | 6,93E+07 | 100,00 %
TABU_VOT | 127E-04 | 1,27E-04 | 2,74E-20 | 2,04E+08 | 6,09E+07 | 100,00 %

Table A. 8. Results of performance evaluations of hyperheuristic patterns on Griewangk

Function
Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 0,00E+00 | 7,45E-02 | 4,84E-02 | 1,84E+08 | 4,65E+07 | 6,00 %
SR_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,37E+05 | 6,90E+05 | 100,00 %
SR_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,22E+05 | 7,44E+05 | 100,00 %
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SR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,07E+05 | 6,68E+05 | 100,00 %
RD_AND | 0,00E+00 | 2,16E-01 | 5,49E-01 | 1,17E+08 | 2,48E+07 | 4,00 %
RD_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,36E+05 | 2,94E+05 | 100,00 %
RD_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,08E+05 | 5,94E+05 | 100,00 %
RD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,90E+05 | 3,43E+05 | 100,00 %
RP_AND | 0,00E+00 | 7,29E-02 | 4,80E-02 | 1,76E+08 | 5,24E+07 | 8,00 %
RP_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 8,38E+05 | 1,15E+06 | 100,00 %
RP_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,67E+05 | 7,46E+05 | 100,00 %
RP_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,08E+05 | 6,16E+05 | 100,00 %
RPD_AND | 0,00E+00 | 7,99E-02 | 4,08E-02 | 1,90E+08 | 2,75E+07 | 2,00 %
RPD_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,79E+06 | 4,77E+06 | 100,00 %
RPD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,51E+06 | 5,16E+06 | 100,00 %
RPD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,70E+06 | 3,95E+06 | 100,00 %
CF_AND | 0,00E+00 | 4,72E-02 | 3,21E-02 | 1,86E+08 | 3,85E+07 | 4,00 %
CF_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,52E+06 | 4,37E+06 | 100,00 %
CF_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,45E+06 | 2,65E+06 | 100,00 %
CF_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,36E+06 | 6,59E+06 | 100,00 %
GR_AND | 0,00E+00 | 7,45E-02 | 4,78E-02 | 1,63E+08 | 5,89E+07 | 12,00 %
GR_OR 0,00E+00 | 7,12E-02 | 5,21E-02 | 1,69E+08 | 6,55E+07 | 14,00 %
GR_PVO | 0,00E+00 | 7,16E-02 | 5,01E-02 | 1,71E+08 | 6,23E+07 | 12,00 %
GR_VOT | 0,00E+00 | 7,12E-02 | 5,03E-02 | 1,73E+08 | 6,19E+07 | 12,00 %
TABU_AND | 0,00E+00 | 7,85E-02 | 4,74E-02 | 1,83E+08 | 4,34E+07 | 6,00 %
TABU_OR | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,48E+06 | 2,83E+06 | 100,00 %
TABU_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,80E+06 | 3,26E+06 | 100,00 %
TABU_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,46E+06 | 3,14E+06 | 100,00 %

Table A. 9. Results of performance evaluations of hyperheuristic patterns on Ackley

Function
Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 2.84E-14 | 2,84E-14 | 1,91E-29 | 9,94E+03 | 2,38E+04 | 100.00 %
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SR_OR 2,84E-14 | 2,84E-14 | 1,91E-29 | 5,18E+03 | 7,06E+03 | 100.00 %
SR_PVO 2,84E-14 | 2,84E-14 | 1,91E-29 | 4,23E+03 | 4,75E+03 | 100.00 %
SR_VOT 2,84E-14 | 2,84E-14 | 1,91E-29 | 5,36E+03 | 5,75E+03 | 100.00 %
RD_AND 2,84E-14 | 2,84E-14 | 1,91E-29 | 3,04E+03 | 2,53E+03 | 100.00 %
RD_OR 2,84E-14 | 2,84E-14 | 1,91E-29 | 3,28E+03 | 2,04E+03 | 100.00 %
RD_PVO 2,84E-14 | 2,84E-14 | 1,91E-29 | 3,24E+03 | 2,51E+03 | 100.00 %
RD_VOT 2,84E-14 | 2,84E-14 | 1,91E-29 | 3,17E+03 | 3,11E+03 | 100.00 %
RP_AND 2,84E-14 | 2,84E-14 | 1,91E-29 | 1,44E+04 | 2,68E+04 | 100.00 %
RP_OR 2,84E-14 | 2,84E-14 | 1,91E-29 | 4,56E+03 | 8,97E+03 | 100.00 %
RP_PVO 2,84E-14 | 2,84E-14 | 1,91E-29 | 5,33E+03 | 8,65E+03 | 100.00 %
RP_VOT 2,84E-14 | 2,84E-14 | 1,91E-29 | 4,15E+03 | 6,56E+03 | 100.00 %
RPD_AND | 2.84E-14 | 2,84E-14 | 1,91E-29 | 1,21E+04 | 1,74E+04 | 100.00 %
RPD_OR 2,84E-14 | 2,84E-14 | 1,91E-29 | 9,67E+03 | 1,70E+04 | 100.00 %
RPD_PVO | 284E-14 | 2,84E-14 | 1,91E-29 | 1,61E+04 | 3,04E+04 | 100.00 %
RPD_VOT | 284E-14 | 2,84E-14 | 1,91E-29 | 9,67E+03 | 1,70E+04 | 100.00 %
CF_AND 2,84E-14 | 2,84E-14 | 1,91E-29 | 1,67E+04 | 3,84E+04 | 100.00 %
CF_OR 2,84E-14 | 2,84E-14 | 1,91E-29 | 7,67E+03 | 1,61E+04 | 100.00 %
CF_PVO 2,84E-14 | 2,84E-14 | 1,91E-29 | 6,37E+03 | 8,43E+03 | 100.00 %
CF_VOT 2,84E-14 | 2,84E-14 | 1,91E-29 | 1,34E+04 | 2,31E+04 | 100.00 %
GR_AND 2,84E-14 | 2,84E-14 | 1,91E-29 | 4,57E+03 | 6,51E+03 | 100.00 %
GR_OR 2,84E-14 | 2,84E-14 | 1,91E-29 | 4,57E+03 | 6,51E+03 | 100.00 %
GR_PVO 2,84E-14 | 2,84E-14 | 1,91E-29 | 3,88E+03 | 4,85E+03 | 100.00 %
GR_VOT 2,84E-14 | 2,84E-14 | 1,91E-29 | 4,57E+03 | 6,51E+03 | 100.00 %
TABU_AND | 284F-14 | 2,84E-14 | 1,91E-29 | 1,98E+04 | 3,19E+04 | 100.00 %
TABU_OR | 284F-14 | 2,84E-14 | 1,91E-29 | 1,51E+04 | 2,67E+04 | 100.00 %
TABU_PVO | 284E-14 | 2,84E-14 | 1,91E-29 | 1,63E+04 | 2,45E+04 | 100.00 %
TABU_VOT | 284E-14 | 2,84E-14 | 1,91E-29 | 2,43E+04 | 5,56E+04 | 100.00 %

Table A.10. Results of performance evaluations of hyperheuristic patterns on Easom

Function
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Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.

SR_AND -1,00E+00 | -1,00E+00 | 0,00E+00 | 3,62E+07 | 2,34E+07 | 100,00 %
SR_OR -1,00E+00 | -8,80E-01 | 3,28E-01 | 1,57E+08 | 1,36E+08 | 88,00 %

SR_PVO -1,00E+00 | -9,60E-01 | 1,98E-01 | 1,33E+08 | 1,08E+08 | 96,00 %
SR_VOT -1,00E+00 | -1,00E+00 | 0,00E+00 | 3,50E+07 | 2,37E+07 | 100,00 %
RD_AND -1,00E+00 | -1,00E+00 | 0,00E+00 | 1,76E+07 | 8,59E+06 | 100,00 %
RD_OR -1,00E+00 | -9,00E-01 | 3,03E-01 | 1,72E+08 | 1,30E+08 | 88,00 %

RD_PVO -1,00E+00 | -9,40E-01 | 2,40E-01 | 1,32E+08 | 1,15E+08 | 94,00 %
RD_VOT -1,00E+00 | -1,00E+00 | 0,00E+00 | 1,57E+07 | 9,38E+06 | 100,00 %
RP_AND -1,00E+00 | -1,00E+00 | 0,00E+00 | 2,66E+07 | 1,56E+07 | 100,00 %
RP_OR -1,00E+00 | -9,59E-01 | 1,98E-01 | 1,21E+08 | 1,14E+08 | 94,00 %

RP_PVO -1,00E+00 | -9,60E-01 | 1,98E-01 | 1,31E+08 | 1,08E+08 | 96,00 %
RP_VOT -1,00E+00 | -1,00E+00 | 0,00E+00 | 2,66E+07 | 1,56E+07 | 100,00 %
RPD_AND | .1 00E+00 | -1,00E+00 | 0,00E+00 | 2,96E+07 | 2,04E+07 | 100,00 %
RPD_OR -1,00E+00 | -9,60E-01 | 1,98E-01 | 1,39E+08 | 1,15E+08 | 96,00 %
RPD_PVO | .1 00E+00 | -9,20E-01 | 2,74E-01 | 1,24E+08 | 1,13E+08 | 92,00 %
RPD_VOT | .1 00E+00 | -1,00E+00 | 0,00E+00 | 3,58E+07 | 2,78E+07 | 100,00 %
CF_AND -1,00E+00 | -1,00E+00 | 0,00E+00 | 2,70E+07 | 1,96E+07 | 100,00 %
CF_OR -1,00E+00 | -9,60E-01 | 1,98E-01 | 1,25E+08 | 1,14E+08 | 96,00 %

CF_PVO -1,00E+00 | -9,20E-01 | 2,74E-01 | 1,46E+08 | 1,12E+08 | 92,00 %
CF_VOT -1,00E+00 | -9,80E-01 | 1,41E-01 | 3,96E+07 | 6,26E+07 | 98,00 %
GR_AND -1,00E+00 | -1,00E+00 | 0,00E+00 | 6,92E+07 | 4,54E+07 | 100,00 %
GR_OR -1,00E+00 | -1,00E+00 | 0,00E+00 | 6,92E+07 | 4,54E+07 | 100,00 %

GR_PVO -1,00E+00 | -1,00E+00 | 0,00E+00 | 5,71E+07 | 4,34E+07 | 100,00 %
GR_VOT -1,00E+00 | -1,00E+00 | 0,00E+00 | 6,92E+07 | 4,54E+07 | 100,00 %
TABU_AND | _1 00E+00 | -1,00E+00 | 0,00E+00 | 3,25E+07 | 2,65E+07 | 100,00 %
TABU_OR | .1 00E+00 | -9,00E-01 | 3,03E-01 | 1,55E+08 | 1,23E+08 | 90,00 %
TABU_PVO | .1 00E+00 | -8,80E-01 | 3,28E-01 | 1,69E+08 | 1,37E+08 | 88,00 %
TABU_VOT | .1 00E+00 | -1,00E+00 | 0,00E+00 | 3,25E+07 | 2,65E+07 | 100,00 %
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Table A.11. Results of performance evaluations of hyperheuristic patterns on Rotated

Function

Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 2,98E-14 | 1,51E-13 | 9,84E-14 | 1,70E+08 | 1,17E+06 | 0,00 %
SR_OR 3,16E-07 | 7,42E-05 | 7,21E-05 | 1,69E+08 | 1,27E+06 | 0,00 %
SR_PVO 2,53E-13 | 1,04E-12 | 5,15E-13 | 1,65E+08 | 5,04E+06 | 0,00 %
SR_VOT 3,58E-13 | 1,08E-12 | 4,94E-13 | 1,70E+08 | 1,28E+06 | 0,00 %
RD_AND 2,75E-01 | 3,87E+02 | 6,97E+02 | 9,95E+07 | 1,18E+06 | 0,00 %
RD_OR 2,17E-05 | 1,21E-03 | 1,17E-03 | 1,68E+08 | 1,71E+06 | 0,00 %
RD_PVO 1,43E-12 | 2,25E-06 | 4,30E-06 | 1,69E+08 | 9,66E+04 | 0,00 %
RD_VOT 1,34E-13 | 1,39E-08 | 4,43E-08 | 1,69E+08 | 6,31E+04 | 0,00 %
RP_AND 2,98E-14 | 1,73E-13 | 1,13E-13 | 1,59E+08 | 1,26E+04 | 0,00 %
RP_OR 551E-06 | 3,17E-04 | 3,07E-04 | 1,70E+08 | 7,13E+04 | 0,00 %
RP_PVO 1,19€-13 | 1,35E-12 | 5,15E-13 | 1,70E+08 | 1,26E+06 | 0,00 %
RP_VOT 2,24E-13 | 1,15E-12 | 5,70E-13 | 1,71E+08 | 3,82E+04 | 0,00 %
RPD_AND | 1 49E-14 | 1,80E-13 | 1,23E-13 | 1,70E+08 | 2,57E+04 | 0,00 %
RPD_OR 2,98E-14 | 7,96E-14 | 2,82E-14 | 1,62E+08 | 5,99E+06 | 0,00 %
RPD_PVO | 149E-14 | 4,65E-14 | 1,72E-14 | 1,71E+08 | 2,17E+06 | 0,00 %
RPD_VOT | 1 49E-14 | 542E-14 | 2,51E-14 | 1,71E+08 | 2,57E+06 | 0,00 %
CF_AND 7,78E-26 | 2,32E-13 | 3,35E-13 | 1,67E+08 | 1,48E+07 | 2,00 %
CF_OR 7,78E-26 | 7,78E-26 | 2,32E-41 | 8,51E+06 | 7,48E+06 | 100,00 %
CF_PVO 7,78E-26 | 7,78E-26 | 2,32E-41 | 1,65E+07 | 1,39E+07 | 100,00 %
CF_VOT 7,78E-26 | 7,78E-26 | 2,32E-41 | 6,12E+06 | 3,99E+06 | 100,00 %
GR_AND 1,49E-14 | 1,21E-13 | 8,31E-14 | 1,68E+08 | 4,73E+06 | 0,00 %
GR_OR 7,78E-26 | 1,31E-13 | 1,14E-13 | 1,70E+08 | 5,78E+06 | 4,00 %
GR_PVO 1,49E-14 | 1,18E-13 | 9,19E-14 | 1,70E+08 | 1,25E+06 | 0,00 %
GR_VOT 1,49E-14 | 1,25E-13 | 8,20E-14 | 1,70E+08 | 2,09E+06 | 0,00 %
TABU_AND | 1 49E-14 | 1,88E-13 | 1,47E-13 | 1,70E+08 | 3,76E+05 | 0,00 %
TABU_OR | 1 49E-14 | 3,55E-14 | 1,27E-14 | 1,71E+08 | 9,33E+04 | 0,00 %
TABU_PVO | 778E-26 | 2,89E-14 | 1,29E-14 | 1,63E+08 | 2,85E+07 | 6,00 %
TABU_VOT | 149E-14 | 3,40E-14 | 1,31E-14 | 1,71E+08 | 7,98E+04 | 0,00 %
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Table A.12. Results of performance evaluations of hyperheuristic patterns on Royal Road

Function
Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 0,00E+00 | 0,00E+00 | 0,00E+00 | 8,82E+04 | 4,64E+04 | 100,00 %
SR_OR 1,00E+00 | 2,06E+00 | 3,73E-01 | 1,52E+09 | 2,36E+05 | 0,00 %
SR_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,01E+09 | 1,06E+08 | 100,00 %
SR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 8,18E+08 | 1,08E+08 | 100,00 %
RD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,67E+04 | 1,29E+04 | 100,00 %
RD_OR 2,00E+00 | 2,18E+00 | 3,88E-01 | 1,51E+09 | 6,72E+05 | 0,00 %
RD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,06E+09 | 5,91E+07 | 100,00 %
RD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,63E+08 | 9,19E+07 | 100,00 %
RP_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 9,03E+04 | 3,61E+04 | 100,00 %
RP_OR 1,00E+00 | 1,98E+00 | 3,77E-01 | 1,53E+09 | 2,66E+05 | 0,00 %
RP_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,02E+09 | 1,53E+08 | 100,00 %
RP_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,93E+08 | 1,18E+08 | 100,00 %
RPD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 8,89E+04 | 4,54E+04 | 100,00 %
RPD_OR 1,00E+00 | 2,04E+00 | 3,48E-01 | 1,48E+09 | 5,09E+07 | 0,00 %
RPD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,03E+09 | 1,91E+08 | 100,00 %
RPD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 8,31E+08 | 8,49E+07 | 100,00 %
CF_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,20E+05 | 5,41E+04 | 100,00 %
CF_OR 1,00E+00 | 2,06E+00 | 4,70E-01 | 1,35E+09 | 1,20E+07 | 0,00 %
CF_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 9,41E+08 | 8,54E+07 | 100,00 %
CF_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,52E+08 | 7,17E+07 | 100,00 %
GR_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,10E+05 | 1,25E+05 | 100,00 %
GR_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,10E+05 | 1,25E+05 | 100,00 %
GR_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,42E+05 | 1,49E+05 | 100,00 %
GR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,10E+05 | 1,25E+05 | 100,00 %
TABU_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 8,85E+04 | 4,05E+04 | 100,00 %
TABU_OR | 1 00E+00 | 1,92E+00 | 3,96E-01 | 1,50E+09 | 1,95E+07 | 0,00 %
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TABU_PVO

0,00E+00

0,00E+00

0,00E+00

9,52E+08

8,91E+07

100,00 %

TABU_VOT

0,00E+00

0,00E+00

0,00E+00

8,05E+08

9,03E+07

100,00 %

Table A.13. Results of performance evaluations of hyperheuristic patterns on Goldberg

Function

Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 0,00E+00 | 6,52E+00 | 3,20E+00 | 7,16E+08 | 2,77E+07 | 2,00 %
SR_OR 1,60E+01 | 2,00E+01 | 1,54E+00 | 6,92E+08 | 4,55E+05 | 0,00 %
SR_PVO 1,60E+01 | 2,05E+01 | 1,69E+00 | 7,00E+08 | 2,28E+07 | 0,00 %
SR_VOT 1,80E+01 | 2,10E+01 | 1,29E+00 | 7,26E+08 | 2,01E+06 | 0,00 %
RD_AND | 2 00E+00 | 8,40E+00 | 2,06E+00 | 9,81E+07 | 2,26E+05 | 0,00 %
RD_OR 1,60E+01 | 1,99E+01 | 1,10E+00 | 6,18E+08 | 2,93E+05 | 0,00 %
RD_PVO | 1,00E+01 | 1,64E+01 | 2,09E+00 | 4,68E+08 | 1,67E+07 | 0,00 %
RD_VOT | 8,00E+00 | 1,51E+01 | 2,29E+00 | 4,42E+08 | 2,11E+07 | 0,00 %
RP_AND | 0,00E+00 | 6,08E+00 | 3,05E+00 | 7,16E+08 | 2,62E+07 | 4,00 %
RP_OR 1,60E+01 | 1,95E+01 | 1,69E+00 | 6,94E+08 | 4,35E+06 | 0,00 %
RP_PVO 1,60E+01 | 2,06E+01 | 1,51E+00 | 7,25E+08 | 2,83E+06 | 0,00 %
RP_VOT | 160E+01 | 2,08E+01 | 1,56E+00 | 7,35E+08 | 2,91E+06 | 0,00 %
RPD_AND | 0,00E+00 | 5,76E+00 | 3,09E+00 | 7,35E+08 | 3,23E+07 | 4,00 %
RPD_OR 1,40E+01 | 2,00E+01 | 1,67E+00 | 6,99E+08 | 2,75E+07 | 0,00 %
RPD_PVO | 140E+01 | 2,06E+01 | 1,87E+00 | 7,37E+08 | 8,69E+06 | 0,00 %
RPD_VOT | 180E+01 | 2,11E+01 | 1,52E+00 | 7,37E+08 | 7,95E+06 | 0,00 %
CF_AND | 6 00E+00 | 2,01E+01 | 9,61E+00 | 6,85E+08 | 4,03E+07 | 0,00 %
CF_OR 2,20E+01 | 2,70E+01 | 1,47E+00 | 7,51E+08 | 1,89E+07 | 0,00 %
CF_PVO 2,40E+01 | 2,85E+01 | 1,55E+00 | 8,02E+08 | 6,54E+06 | 0,00 %
CF_VOT 1,60E+01 | 2,62E+01 | 3,89E+00 | 7,88E+08 | 2,33E+07 | 0,00 %
GR_AND | 0,00E+00 | 6,72E+00 | 3,74E+00 | 7,57E+08 | 3,37E+07 | 2,00 %
GR_OR 0,00E+00 | 6,80E+00 | 3,38E+00 | 7,64E+08 | 2,68E+07 | 4,00 %
GR_PVO | 0,00E+00 | 7,44E+00 | 3,57E+00 | 7,60E+08 | 2,00E+07 | 2,00 %
GR_VOT | 2,00E+00 | 5,84E+00 | 3,40E+00 | 7,59E+08 | 3,21E+07 | 0,00 %
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TABU_AND | 0,00E+00 | 6,16E+00 | 3,07E+00 | 7,18E+08 | 4,30E+07 | 8,00 %
TABU_OR | 1 40E+01 | 2,03E+01 | 1,71E+00 | 7,06E+08 | 1,29E+05 | 0,00 %
TABU_PVO |1 80E+01 | 2,13E+01 | 1,25E+00 | 7,15E+08 | 2,27E+07 | 0,00 %
TABU_VOT | 160E+01 | 2,16E+01 | 1,62E+00 | 7,34E+08 | 1,74E+06 | 0,00 %

Table A.14. Results of performance evaluations of hyperheuristic patterns on Whitley

Function
Best Fit. Avg. Best Fit. Avg. Num. of Eval. S.R.
SR_AND 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,44E+04 | 3,89E+04 | 100,00 %
SR_OR 0,00E+00 | 1,08E+00 | 1,01E+00 | 8,08E+08 | 3,23E+08 | 46,00 %
SR_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,37E+08 | 2,14E+08 | 100,00 %
SR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,74E+08 | 2,48E+08 | 100,00 %
RD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,10E+03 | 1,59E+03 | 100,00 %
RD_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,46E+07 | 5,87E+07 | 100,00 %
RD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,85E+07 | 6,01E+07 | 100,00 %
RD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,36E+07 | 5,63E+07 | 100,00 %
RP_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,29E+04 | 2,49E+04 | 100,00 %
RP_OR 0,00E+00 | 1,80E+00 | 6,06E-01 | 1,02E+09 | 1,45E+08 | 10,00 %
RP_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,75E+08 | 1,39E+08 | 100,00 %
RP_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,82E+08 | 1,73E+08 | 100,00 %
RPD_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,59E+04 | 2,95E+04 | 100,00 %
RPD_OR 0,00E+00 | 1,84E+00 | 5,48E-01 | 1,03E+09 | 2,04E+08 | 8,00 %
RPD_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 8,07E+08 | 1,24E+08 | 100,00 %
RPD_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,25E+08 | 1,53E+08 | 100,00 %
CF_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,88E+06 | 1,84E+06 | 100,00 %
CF_OR 2,00E+00 | 3,44E+00 | 9,07E-01 | 1,07E+09 | 2,32E+07 | 0,00 %
CF_PVO 0,00E+00 | 0,00E+00 | 0,00E+00 | 9,23E+08 | 6,87E+07 | 100,00 %
CF_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 8,27E+08 | 1,35E+08 | 100,00 %
GR_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,27E+04 | 4,28E+04 | 100,00 %
GR_OR 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,27E+04 | 4,28E+04 | 100,00 %
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GR_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,21E+04 | 3,48E+04 | 100,00 %
GR_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,27E+04 | 4,28E+04 | 100,00 %
TABU_AND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 5,29E+04 | 2,84E+04 | 100,00 %
TABU_OR | 0,00E+00 | 1,84E+00 | 5,48E-01 | 1,04E+09 | 2,26E+08 | 8,00 %
TABU_PVO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,10E+08 | 1,72E+08 | 100,00 %
TABU_VOT | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,15E+08 | 1,21E+08 | 100,00 %
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APPENDIX B: SUCCESS RATE BELONGS TO BENCHMARK
FUNCTIONS FOR Fc FRAMEWORK

Success rate of each Fc based hyperheuristic for benchmark function optimization
Is provided in the following tables (Table B.1- B.7). Success rate values are presented as

the ratio of finding optimal solution with their standard deviations.

Table B.1. Success rate of SR based group decision making hyperheuristic patterns on
Benchmark Functions

SR_AND SR_OR SR_PVO SR_VOT
F1 1,00 1,00 1,00 1,00
F2 0,00 0,00 0,00 0,00
F3 1,00 0,14 1,00 1,00
F4 0,92 0,32 0,74 0,76
F5 1,00 1,00 1,00 1,00
F6 1,00 0,00 1,00 1,00
F7 1,00 0,10 1,00 1,00
F8 1,00 0,46 0,98 0,88
F9 1,00 1,00 1,00 1,00
F10 1,00 0,06 1,00 1,00
F11 1,00 0,00 0,76 0,74
F12 1,00 0,00 1,00 1,00
F13 1,00 0,00 1,00 1,00
F14 1,00 1,00 1,00 1,00
avr. 0,92 0,36 0,89 0,88
std. 0,27 0,44 0,27 0,27

Table B.2. Success rate of RD based group decision making hyperheuristic patterns on

Benchmark Functions



RD_AND RD_OR RD_PVO | RD_VOT
F1 1,00 1,00 1,00 1,00
F2 0,00 0,00 0,00 0,00
F3 1,00 0,24 1,00 1,00
F4 0,88 0,42 0,84 0,74
F5 0,42 1,00 1,00 1,00
F6 1,00 0,00 0,98 1,00
F7 1,00 0,04 1,00 1,00
F8 0,84 0,40 0,62 0,44
F9 0,98 1,00 1,00 1,00
F10 1,00 0,06 0,92 1,00
F11 0,00 0,00 0,00 0,00
F12 1,00 0,00 1,00 1,00
F13 1,00 0,00 1,00 1,00
F14 1,00 1,00 1,00 1,00
avr. 0,79 0,37 0,81 0,80
std. 0,37 0,44 0,36 0,37
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Table B. 3. Success rate of RP based group decision making hyperheuristic patterns on

Benchmark Functions

RP_AND RP_OR RP_PVO RP_VOT
F1 1,00 0,98 1,00 1,00
F2 0,00 0,00 0,00 0,00
F3 1,00 0,22 1,00 1,00
F4 0,88 0,34 0,66 0,76
F5 1,00 1,00 1,00 1,00
F6 1,00 0,00 1,00 1,00
F7 1,00 0,00 1,00 1,00
F8 1,00 0,00 0,66 0,72
F9 1,00 0,58 1,00 1,00
F10 1,00 0,00 1,00 1,00




F11 1,00 0,00 0,72 0,86
F12 1,00 0,00 1,00 1,00
F13 1,00 0,00 1,00 1,00
F14 1,00 0,90 1,00 1,00
avr. 0,92 0,29 0,86 0,88
std. 0,27 0,40 0,28 0,27
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Table B.4. Success rate of RPD based group decision making hyperheuristic patterns on

Benchmark Functions

RPD_AND | RPD OR | RPD_PVO | RPD_VOT
F1 1,00 1,00 1,00 1,00
F2 0,00 0,00 0,00 0,00
F3 1,00 0,20 1,00 1,00
F4 0,98 0,30 0,84 0,84
F5 1,00 1,00 1,00 1,00
F6 1,00 0,00 1,00 1,00
F7 1,00 0,12 1,00 1,00
F8 1,00 1,00 1,00 1,00
F9 1,00 1,00 1,00 1,00
F10 1,00 0,84 1,00 1,00
F11 1,00 0,00 0,90 0,74
F12 1,00 0,00 1,00 1,00
F13 1,00 0,00 1,00 1,00
F14 1,00 1,00 1,00 1,00
avr. 0,93 0,46 0,91 0,90
std. 0,27 0,47 0,27 0,27

Table B.5. Success rate of CF based group decision making hyperheuristic patterns on

Benchmark Functions



CF_AND CF_OR CF_PVO | CF.VOT
F1 1,00 1,00 1,00 1,00
F2 0,00 0,00 0,00 0,00
F3 1,00 0,18 1,00 1,00
F4 0,88 0,88 0,78 0,88
F5 1,00 1,00 1,00 1,00
F6 1,00 0,00 1,00 1,00
F7 1,00 0,06 1,00 1,00
F8 1,00 1,00 1,00 1,00
F9 1,00 1,00 1,00 1,00
F10 1,00 0,78 1,00 1,00
F11 1,00 1,00 1,00 1,00
F12 1,00 0,00 1,00 1,00
F13 1,00 0,00 1,00 0,98
F14 1,00 0,98 1,00 1,00

avr. 0,92 0,56 0,91 0,92
std. 0,27 0,48 0,27 0,27
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Table B.6. Success rate of GR based group decision making hyperheuristic patterns on

Benchmark Functions

GR_AND GR_OR GR_PVO | GR_VOT
F1 1,00 1,00 1,00 1,00
F2 0,00 0,00 0,00 0,00
F3 1,00 1,00 1,00 1,00
F4 0,86 0,98 1,00 1,00
F5 1,00 1,00 1,00 1,00
F6 1,00 1,00 1,00 1,00
F7 1,00 1,00 1,00 1,00
F8 1,00 1,00 1,00 1,00
F9 1,00 1,00 1,00 1,00




F10 1,00 1,00 1,00 1,00
F11 1,00 1,00 1,00 1,00
F12 1,00 1,00 1,00 1,00
F13 1,00 1,00 1,00 1,00
F14 1,00 1,00 1,00 1,00
avr. 0,92 0,93 0,93 0,93
std. 0,27 0,27 0,27 0,27

Table B.7.
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Success rate of TABU based group decision making hyperheuristic patterns on

Benchmark Functions

TABU_AND | TABU OR | TABU_PVO | TABU_VOT
F1 1,00 1,00 1,00 1,00
F2 0,00 0,00 0,00 0,00
F3 1,00 0,26 1,00 1,00
F4 0,96 0,50 0,82 0,86
F5 1,00 1,00 1,00 1,00
F6 1,00 0,00 1,00 1,00
F7 1,00 0,10 1,00 1,00
F8 1,00 1,00 1,00 1,00
F9 1,00 1,00 1,00 1,00
F10 1,00 0,84 0,98 1,00
F11 1,00 0,00 0,92 0,84
F12 1,00 0,00 1,00 1,00
F13 1,00 0,00 1,00 1,00
F14 1,00 1,00 1,00 1,00
avr. 0,93 0,48 0,91 0,91
std. 0,27 0,47 0,27 0,27
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APPENDIX C: EXPERIMENTAL RESULTS TABLES OF
HYPERHEURISTICS PATTERNS ON EXAMINATION
TIMETABLING DATA

For 21 university examination timetabling data, on following 14 tables, Average
Best Fitness and Average Fitness Evaluation per Execution values are provided for
experiments that are performed on FA framework with 28 different hyperheuristics. The
hyperheuristics comes from 7 heuristic selection mechanisms which are SR, RD, RP, RPD,
CF, GR, TABU and 4 move acceptance strategies that | proposed as group decision
making methods, G-AND,G- OR, G-PVO, G-VOT. Also, related standard deviation values

added to the tables as second columns under each table title.

Table C.1. Results of performance evaluations of hyperheuristic patterns on car-f-92

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -1,19E-02 | -1,01E-02 | 9,83E-04 | 1,04E+08 | 2,07E+05
SR_OR -1,22E-03 | -1,12E-03 | 2,62E-05 | 8,68E+07 | 3,79E+04
SR_PVO -1,21E-02 | -1,00E-02 | 9,03E-04 | 9,73E+07 | 2,82E+06
SR_VOT -2,07E-02 | -1,73E-02 | 1,72E-03 | 1,03E+08 | 1,58E+06
RD_AND -1,44E-02 | -1,07E-02 | 1,31E-03 | 1,01E+08 | 2,25E+05
RD_OR -1,17E-03 | -1,12E-03 | 1,99E-05 | 8,85E+07 | 3,06E+04
RD_PVO -1,24E-02 | -1,00E-02 | 8,16E-04 | 1,01E+08 | 3,60E+04
RD_VOT -2,06E-02 | -1,76E-02 | 1,62E-03 | 1,02E+08 | 3,59E+05
RP_AND -1,25E-02 | -9,89E-03 | 1,01E-03 | 1,05E+08 | 2,64E+05
RP_OR -1,19E-03 | -1,12E-03 | 2,03E-05 | 8,79E+07 | 6,79E+05
RP_PVO -1,19E-02 | -1,01E-02 | 7,56E-04 | 1,01E+08 | 7,72E+04
RP_VOT -2,04E-02 | -1,71E-02 | 1,69E-03 | 1,05E+08 | 2,49E+05
RPD_AND | .1 29E-02 | -1,01E-02 | 1,23E-03 | 1,05E+08 | 2,30E+05
RPD_OR -1,19E-03 | -1,12E-03 | 1,96E-05 | 8,79E+07 | 7,03E+04
RPD_PVO -1,17E-02 | -1,02E-02 | 6,68E-04 | 9,98E+07 | 1,68E+06




RPD_VOT | .2 11E-02 | -1,73E-02 | 1,52E-03 | 1,05E+08 | 2,24E+05
CF_AND -1,45E-02 | -1,03E-02 | 1,35E-03 | 8,34E+07 | 1,35E+05
CF_OR -1,16E-03 | -1,12E-03 | 1,82E-05 | 6,99E+07 | 4,82E+04
CF_PVO -1,15E-02 | -9,95E-03 | 8,12E-04 | 7,78E+07 | 2,66E+06
CF_VOT -2,07E-02 | -1,64E-02 | 1,79E-03 | 8,33E+07 | 2,11E+05
GR_AND -1,29E-02 | -1,03E-02 | 1,10E-03 | 1,54E+08 | 4,38E+05
GR_OR -3,52E-03 | -3,32E-03 | 1,11E-04 | 1,41E+08 | 1,10E+05
GR_PVO -1,72E-02 | -1,49E-02 | 9,70E-04 | 1,45E+08 | 5,01E+06
GR_VOT -2,17E-02 | -1,85E-02 | 1,54E-03 | 1,54E+08 | 5,74E+05
TABU_AND | .1 21E-02 | -9,86E-03 | 1,02E-03 | 1,01E+08 | 1,97E+05
TABU_OR | .117E-03 | -1,13E-03 | 1,88E-05 | 8,53E+07 | 2,63E+04
TABU_PVO | _126E-02 | -1,03E-02 | 7,58E-04 | 9,70E+07 | 3,03E+04
TABU_VOT | .2/15E-02 | -1,76E-02 | 1,89E-03 | 1,00E+08 | 1,86E+05

Table C.2. Results of performance evaluations of hyperheuristic patterns on car-s-91

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -3,57E-01 | -1,66E-01 | 5,82E-02 | 1,01E+08 | 8,18E+05
SR_OR -1,37E-03 | -1,33E-03 | 1,43E-05 | 8,37E+07 | 1,04E+05
SR_PVO -4,55E-02 | -3,54E-02 | 5,84E-03 | 9,08E+07 | 3,27E+06
SR_VOT -1,00E+00 | -5,55E-01 | 1,87E-01 | 1,00E+08 | 7,06E+06
RD_AND -5,00E-01 | -1,98E-01 | 8,40E-02 | 9,88E+07 | 1,50E+06
RD_OR -1,39E-03 | -1,33E-03 | 2,15E-05 | 8,48E+07 | 1,32E+06
RD_PVO -4,63E-02 | -3,36E-02 | 4,57E-03 | 9,65E+07 | 1,47E+06
RD_VOT -7,14E-01 | -5,07E-01 | 1,50E-01 | 9,98E+07 | 1,23E+06
RP_AND -5,00E-01 | -1,87E-01 | 7,93E-02 | 1,02E+08 | 1,47E+06
RP_OR -1,41E-03 | -1,33E-03 | 2,30E-05 | 8,40E+07 | 1,19E+06
RP_PVO -5,49E-02 | -3,83E-02 | 5,97E-03 | 9,58E+07 | 1,50E+06
RP_VOT -1,00E+00 | -5,27E-01 | 1,63E-01 | 1,01E+08 | 6,89E+06
RPD_AND | _455E-01 | -1,86E-01 | 9,35E-02 | 1,02E+08 | 1,54E+06

76



RPD_OR -1,40E-03 | -1,34E-03 | 1,63E-05 | 8,45E+07 | 1,33E+06
RPD_PVO -4,85E-02 | -3,72E-02 | 5,16E-03 | 9,07E+07 | 2,48E+06
RPD_VOT | _100E+00 | -5,29E-01 | 1,62E-01 | 1,02E+08 | 5,10E+06
CF_AND -3,13E-01 | -1,47E-01 | 5,11E-02 | 8,03E+07 | 2,24E+06
CF_OR -1,48E-03 | -1,33E-03 | 2,76E-05 | 6,97E+07 | 3,96E+04
CF_PVO -4,50E-02 | -3,45E-02 | 4,82E-03 | 7,79E+07 | 4,71E+04
CF_VOT -1,00E+00 | -4,74E-01 | 1,76E-01 | 8,06E+07 | 4,21E+06
GR_AND -5,00E-01 | -2,03E-01 | 7,51E-02 | 1,48E+08 | 1,60E+06
GR_OR -4,85E-03 | -4,45E-03 | 1,43E-04 | 1,36E+08 | 1,40E+06
GR_PVO -1,35E-01 | -9,20E-02 | 1,65E-02 | 1,39E+08 | 5,52E+06
GR_VOT -1,00E+00 | -5,73E-01 | 2,02E-01 | 1,45E+08 | 1,02E+07
TABU_AND | _357E-01 | -1,80E-01 | 6,79E-02 | 9,61E+07 | 2,96E+06
TABU_OR | .152E-03 | -1,36E-03 | 3,42E-05 | 8,28E+07 | 2,98E+04
TABU_PVO | _556E-02 | -3,73E-02 | 5,57E-03 | 9,32E+07 | 1,43E+06
TABU_VOT | .1 00E+00 | -5,11E-01 | 1,79E-01 | 9,59E+07 | 7,53E+06

Table C.3. Results of performance evaluations of hyperheuristic patterns on ear-f-83

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -5,73E-03 | -4,61E-03 | 3,93E-04 | 1,29E+08 | 1,58E+06
SR_OR -1,96E-03 | -1,84E-03 | 3,71E-05 | 1,12E+08 | 1,39E+06
SR_PVO -7,79E-03 | -6,74E-03 | 4,15E-04 | 1,21E+08 | 2,44E+06
SR_VOT -8,12E-03 | -6,69E-03 | 5,52E-04 | 1,29E+08 | 6,52E+05
RD_AND -5,13E-03 | -4,18E-03 | 3,92E-04 | 1,22E+08 | 1,31E+06
RD_OR -1,95E-03 | -1,82E-03 | 4,68E-05 | 1,13E+08 | 3,77E+04
RD_PVO -6,69E-03 | -5,79E-03 | 3,40E-04 | 1,31E+08 | 1,01E+05
RD_VOT -6,91E-03 | -5,51E-03 | 4,03E-04 | 1,22E+08 | 1,57E+06
RP_AND -5,32E-03 | -4,63E-03 | 3,40E-04 | 1,31E+08 | 4,27E+05
RP_OR -1,98E-03 | -1,82E-03 | 4,48E-05 | 1,13E+08 | 5,60E+04
RP_PVO -7,52E-03 | -6,61E-03 | 3,33E-04 | 1,31E+08 | 1,16E+05

77



RP_VOT -8,50E-03 | -6,67E-03 | 5,18E-04 | 1,30E+08 | 1,55E+06
RPD_AND | .554E-03 | -4,63E-03 | 4,61E-04 | 1,31E+08 | 4,60E+05
RPD_OR -2,00E-03 | -1,88E-03 | 4,08E-05 | 1,12E+08 | 5,74E+04
RPD_PVO -8,01E-03 | -6,76E-03 | 4,34E-04 | 1,25E+08 | 4,14E+06
RPD_VOT -7,49E-03 | -6,62E-03 | 4,75E-04 | 1,30E+08 | 4,13E+05
CF_AND -5,21E-03 | -4,55E-03 | 3,88E-04 | 9,32E+07 | 2,55E+06
CF_OR -2,09E-03 | -1,92E-03 | 4,45E-05 | 8,68E+07 | 1,09E+06
CF_PVO -7,30E-03 | -6,56E-03 | 3,49E-04 | 9,83E+07 | 1,14E+06
CF_VOT -7,91E-03 | -6,56E-03 | 4,67E-04 | 9,91E+07 | 2,08E+05
GR_AND -5,93E-03 | -4,56E-03 | 4,17E-04 | 2,12E+08 | 2,60E+06
GR_OR -3,63E-03 | -3,34E-03 | 8,61E-05 | 1,98E+08 | 2,26E+06
GR_PVO -8,61E-03 | -7,35E-03 | 4,38E-04 | 1,95E+08 | 1,98E+06
GR_VOT -8,18E-03 | -7,10E-03 | 5,35E-04 | 2,12E+08 | 1,05E+06
TABU_AND | .585E-03 | -4,71E-03 | 4,57E-04 | 1,22E+08 | 3,53E+06
TABU_OR | .201E-03 | -1,91E-03 | 4,60E-05 | 1,08E+08 | 1,20E+06
TABU_PVO | .759E-03 | -6,71E-03 | 4,45E-04 | 1,24E+08 | 1,70E+05
TABU_VOT | .773E-03 | -6,61E-03 | 4,41E-04 | 1,24E+08 | 5,95E+05

Table C.4. Results of performance evaluations of hyperheuristic patterns on hec-s-92

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -1,69E-02 | -8,44E-03 | 2,13E-03 | 1,47E+08 | 6,26E+05
SR_OR -3,14E-03 | -2,70E-03 | 1,67E-04 | 1,29E+08 | 1,83E+05
SR_PVO -2,62E-02 | -2,21E-02 | 2,20E-03 | 1,42E+08 | 3,72E+06
SR_VOT -4,03E-02 | -2,24E-02 | 6,15E-03 | 1,47E+08 | 2,09E+06
RD_AND -1,33E-02 | -6,44E-03 | 1,77E-03 | 1,41E+08 | 2,40E+06
RD_OR -3,27E-03 | -2,71E-03 | 1,65E-04 | 1,32E+08 | 1,16E+05
RD_PVO -2,16E-02 | -1,54E-02 | 2,43E-03 | 1,53E+08 | 8,01E+04
RD_VOT -1,14E-02 | -7,84E-03 | 1,37E-03 | 1,43E+08 | 2,54E+06
RP_AND -1,26E-02 | -8,34E-03 | 1,69E-03 | 1,50E+08 | 7,10E+05
RP_OR -3,15E-03 | -2,71E-03 | 1,54E-04 | 1,31E+08 | 1,37E+06
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RP_PVO -3,09E-02 | -2,27E-02 | 2,66E-03 | 1,53E+08 | 1,41E+05
RP_VOT -3,62E-02 | -1,99E-02 | 4,68E-03 | 1,51E+08 | 6,99E+05
RPD_AND -1,27E-02 | -8,03E-03 | 1,70E-03 | 1,50E+08 | 7,73E+05
RPD_OR -3,06E-03 | -2,67E-03 | 1,18E-04 | 1,30E+08 | 1,83E+05
RPD_PVO -2,75E-02 | -2,33E-02 | 2,17E-03 | 1,47E+08 | 5,04E+06
RPD_VOT | .365E-02 | -2,17E-02 | 5,19E-03 | 1,50E+08 | 7,36E+05
CF_AND -1,62E-02 | -8,08E-03 | 1,97E-03 | 1,10E+08 | 5,04E+05
CF_OR -3,08E-03 | -2,63E-03 | 1,31E-04 | 9,40E+07 | 3,25E+05
CF_PVO -2,76E-02 | -2,19E-02 | 2,54E-03 | 1,09E+08 | 3,00E+06
CF_VOT -2,99E-02 | -1,97E-02 | 3,94E-03 | 1,10E+08 | 6,17E+05
GR_AND -1,29E-02 | -8,32E-03 | 1,71E-03 | 2,67E+08 | 2,17E+06
GR_OR -9,26E-03 | -7,90E-03 | 5,13E-04 | 2,48E+08 | 3,03E+06
GR_PVO -3,73E-02 | -2,66E-02 | 4,97E-03 | 2,57E+08 | 8,58E+06
GR_VOT -4,00E-02 | -2,56E-02 | 6,27E-03 | 2,68E+08 | 2,09E+06
TABU_AND | .1 39E-02 | -8,43E-03 | 2,22E-03 | 1,41E+08 | 7,83E+05
TABU_OR -3,23E-03 | -2,71E-03 | 1,44E-04 | 1,24E+08 | 8,65E+05
TABU_PVO | _284E-02 | -2,26E-02 | 2,53E-03 | 1,44E+08 | 7,58E+04
TABU_VOT | .347E-02 | -2,07E-02 | 4,97E-03 | 1,41E+08 | 6,64E+05

Table C.5. Results of performance evaluations of hyperheuristic patterns on kfu-s-93

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -3,45E-02 | -2,43E-02 | 4,48E-03 | 9,61E+07 | 1,35E+06
SR_OR -1,56E-03 | -1,44E-03 | 4,00E-05 | 7,67E+07 | 9,60E+05
SR_PVO -3,65E-02 | -2,86E-02 | 3,15E-03 | 8,85E+07 | 3,45E+04
SR_VOT -5,10E-02 | -4,35E-02 | 2,61E-03 | 9,69E+07 | 1,19E+05
RD_AND -3,65E-02 | -2,53E-02 | 4,85E-03 | 9,49E+07 | 1,75E+06
RD_OR -1,51E-03 | -1,43E-03 | 3,67E-05 | 7,71E+07 | 1,15E+06
RD_PVO -3,40E-02 | -2,74E-02 | 2,95E-03 | 8,78E+07 | 1,34E+06
RD_VOT -5,21E-02 | -4,26E-02 | 3,74E-03 | 9,55E+07 | 1,51E+06
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RP_AND -3,62E-02 | -2,48E-02 | 4,58E-03 | 9,67E+07 | 1,39E+06
RP_OR -1,50E-03 | -1,43E-03 | 2,73E-05 | 7,71E+07 | 4,13E+05
RP_PVO -3,70E-02 | -2,82E-02 | 3,35E-03 | 8,90E+07 | 1,33E+06
RP_VOT -5,38E-02 | -4,44E-02 | 3,91E-03 | 9,74E+07 | 1,20E+06
RPD_AND -3,50E-02 | -2,54E-02 | 4,17E-03 | 9,65E+07 | 1,27E+06
RPD_OR -1,52E-03 | -1,43E-03 | 3,57E-05 | 7,70E+07 | 8,54E+04
RPD_PVO -3,60E-02 | -2,83E-02 | 3,37E-03 | 8,80E+07 | 1,83E+06
RPD_VOT -5,21E-02 | -4,42E-02 | 3,67E-03 | 9,73E+07 | 1,71E+05
CF_AND -3,62E-02 | -2,32E-02 | 5,28E-03 | 7,52E+07 | 2,32E+06
CF_OR -1,56E-03 | -1,44E-03 | 4,27E-05 | 6,44E+07 | 3,58E+04
CF_PVO -3,50E-02 | -2,77E-02 | 3,77E-03 | 7,26E+07 | 4,67E+05
CF_VOT -5,32E-02 | -4,37E-02 | 4,23E-03 | 7,80E+07 | 1,04E+06
GR_AND -3,23E-02 | -2,40E-02 | 4,59E-03 | 1,37E+08 | 2,06E+06
GR_OR -1,40E-02 | -1,09E-02 | 9,89E-04 | 1,29E+08 | 2,73E+05
GR_PVO -4,95E-02 | -4,16E-02 | 3,11E-03 | 1,27E+08 | 1,47E+06
GR_VOT -5,21E-02 | -4,44E-02 | 3,64E-03 | 1,38E+08 | 2,15E+05
TABU_AND | .388E-02 | -2,52E-02 | 4,61E-03 | 9,31E+07 | 1,67E+06
TABU_OR | .154E-03 | -1,44E-03 | 3,45E-05 | 7,46E+07 | 8,88E+04
TABU_PVO | _355E.02 | -2,87E-02 | 3,37E-03 | 8,59E+07 | 1,33E+06
TABU_VOT | .526E-02 | -4,40E-02 | 3,72E-03 | 9,30E+07 | 1,31E+06

Table C.6. Results of performance evaluations of hyperheuristic patterns on Ise-f-91

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -1,31E-02 | -1,03E-02 | 1,51E-03 | 9,99E+07 | 3,04E+05
SR_OR -2,59E-03 | -2,42E-03 | 5,80E-05 | 8,67E+07 | 7,80E+05
SR_PVO -1,67E-02 | -1,37E-02 | 1,30E-03 | 9,40E+07 | 3,10E+06
SR_VOT -1,92E-02 | -1,52E-02 | 2,02E-03 | 9,91E+07 | 1,21E+06
RD_AND -1,24E-02 | -9,65E-03 | 1,64E-03 | 9,79E+07 | 3,46E+05
RD_OR -2,67E-03 | -2,39E-03 | 8,05E-05 | 8,79E+07 | 4,95E+04
RD_PVO -1,48E-02 | -1,27E-02 | 1,25E-03 | 9,95E+07 | 3,64E+04

80



RD_VOT -1,84E-02 | -1,44E-02 | 1,94E-03 | 9,77E+07 | 3,38E+05
RP_AND -1,28E-02 | -1,04E-02 | 1,30E-03 | 1,01E+08 | 3,93E+05
RP_OR -2,65E-03 | -2,40E-03 | 7,77E-05 | 8,78E+07 | 4,63E+04
RP_PVO -1,75E-02 | -1,33E-02 | 1,44E-03 | 9,95E+07 | 5,66E+04
RP_VOT -1,86E-02 | -1,53E-02 | 1,58E-03 | 1,00E+08 | 1,13E+06
RPD_AND -1,47E-02 | -1,01E-02 | 1,59E-03 | 1,00E+08 | 3,47E+05
RPD_OR -2,68E-03 | -2,50E-03 | 6,39E-05 | 8,77E+07 | 5,83E+04
RPD_PVO -1,59E-02 | -1,34E-02 | 1,23E-03 | 9,53E+07 | 3,32E+06
RPD_VOT -2,04E-02 | -1,56E-02 | 2,10E-03 | 1,00E+08 | 3,30E+05
CF_AND -1,45E-02 | -1,04E-02 | 1,51E-03 | 8,05E+07 | 1,16E+06
CF_OR -2,78E-03 | -2,52E-03 | 7,27E-05 | 7,19E+07 | 1,25E+05
CF_PVO -1,56E-02 | -1,28E-02 | 1,36E-03 | 7,92E+07 | 5,04E+04
CF_VOT -1,97E-02 | -1,44E-02 | 2,40E-03 | 8,07E+07 | 2,37E+05
GR_AND -1,37E-02 | -1,04E-02 | 1,54E-03 | 1,44E+08 | 7,95E+05
GR_OR -7,73E-03 | -6,85E-03 | 3,55E-04 | 1,35E+08 | 1,98E+06
GR_PVO -1,97E-02 | -1,61E-02 | 1,88E-03 | 1,42E+08 | 3,29E+05
GR_VOT -1,74E-02 | -1,44E-02 | 1,74E-03 | 1,43E+08 | 7,19E+05
TABU_AND | .135E-02 | -1,00E-02 | 1,54E-03 | 9,59E+07 | 1,75E+06
TABU_OR | .268E-03 | -2,53E-03 | 5,57E-05 | 8,50E+07 | 1,20E+06
TABU_PVO | .153E-02 | -1,33E-02 | 1,12E-03 | 9,55E+07 | 3,81E+04
TABU_VOT | .195E-02 | -1,52E-02 | 2,16E-03 | 9,65E+07 | 3,70E+05

Table C.7. Results of performance evaluations of hyperheuristic patterns on pur-s-93

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -1,47E-03 | -1,37E-03 | 6,82E-05 | 3,65E+07 | 9,81E+04
SR_OR -2,89E-04 | -2,80E-04 | 3,36E-06 | 3,00E+07 | 5,95E+03
SR_PVO -1,04E-03 | -9,60E-04 | 3,18E-05 | 3,15E+07 | 1,16E+06
SR_VOT -1,63E-03 | -1,41E-03 | 7,44E-05 | 3,66E+07 | 3,23E+05
RD_AND -1,69E-03 | -1,53E-03 | 8,72E-05 | 3,81E+07 | 1,39E+05
RD_OR -2,83E-04 | -2,76E-04 | 2,68E-06 | 3,01E+07 | 5,95E+03
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RD_PVO -9,45E-04 | -8,92E-04 | 2,45E-05 | 3,29E+07 | 3,42E+05
RD_VOT -1,79E-03 | -1,56E-03 | 9,36E-05 | 3,80E+07 | 1,55E+05
RP_AND -1,63E-03 | -1,39E-03 | 8,16E-05 | 3,64E+07 | 5,57E+05
RP_OR -2,90E-04 | -2,80E-04 | 3,98E-06 | 2,97E+07 | 4,26E+05
RP_PVO -1,03E-03 | -9,70E-04 | 3,06E-05 | 3,30E+07 | 1,40E+04
RP_VOT -1,57E-03 | -1,39E-03 | 6,83E-05 | 3,69E+07 | 1,09E+05
RPD_AND | .153E-03 | -1,37E-03 | 6,48E-05 | 3,67E+07 | 3,00E+05
RPD_OR -3,03E-04 | -2,88E-04 | 4,26E-06 | 2,99E+07 | 4,35E+05
RPD_PVO -1,03E-03 | -9,65E-04 | 3,25E-05 | 3,12E+07 | 4,02E+05
RPD_VOT | .157E-03 | -1,40E-03 | 7,55E-05 | 3,66E+07 | 1,41E+05
CF_AND -1,50E-03 | -1,37E-03 | 6,64E-05 | 3,35E+07 | 4,81E+05
CF_OR -3,03E-04 | -2,84E-04 | 6,11E-06 | 2,77E+07 | 6,76E+04
CF_PVO -9,99E-04 | -9,46E-04 | 2,95E-05 | 2,92E+07 | 7,15E+05
CF_VOT -1,61E-03 | -1,39E-03 | 7,34E-05 | 3,36E+07 | 4,26E+05
GR_AND -1,52E-03 | -1,37E-03 | 6,91E-05 | 4,13E+07 | 1,36E+05
GR_OR -9,23E-04 | -8,78E-04 | 2,20E-05 | 3,88E+07 | 3,75E+04
GR_PVO -1,89E-03 | -1,63E-03 | 9,71E-05 | 3,93E+07 | 1,04E+06
GR_VOT -1,54E-03 | -1,40E-03 | 6,71E-05 | 4,12E+07 | 1,35E+05
TABU_AND | .1 49E-03 | -1,37E-03 | 5,75E-05 | 3,47E+07 | 9,64E+05
TABU_OR | _303E-04 | -2,93E-04 | 4,56E-06 | 2,97E+07 | 6,80E+03
TABU_PVO | _106E-03 | -9,77E-04 | 3,51E-05 | 3,26E+07 | 1,08E+04
TABU_VOT | .155E-03 | -1,40E-03 | 6,64E-05 | 3,62E+07 | 1,13E+05

Table C.8. Results of performance evaluations of hyperheuristic patterns on rye-s-93

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -1,49E-02 | -9,59E-03 | 2,04E-03 | 9,70E+07 | 1,34E+06
SR_OR -7,88E-04 | -7,24E-04 | 2,41E-05 | 8,36E+07 | 1,24E+06
SR_PVO -1,45E-02 | -1,03E-02 | 1,44E-03 | 9,11E+07 | 3,06E+06
SR_VOT -2,16E-02 | -1,47E-02 | 2,75E-03 | 9,74E+07 | 3,05E+05
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RD_AND -1,27E-02 | -9,04E-03 | 1,67E-03 | 9,51E+07 | 1,47E+06
RD_OR -7,58E-04 | -7,13E-04 | 1,72E-05 | 8,44E+07 | 1,26E+06
RD_PVO -1,22E-02 | -1,02E-02 | 1,04E-03 | 9,61E+07 | 1,08E+06
RD_VOT -2,02E-02 | -1,47E-02 | 2,47E-03 | 9,52E+07 | 1,54E+06
RP_AND -1,54E-02 | -9,30E-03 | 2,06E-03 | 9,84E+07 | 3,19E+05
RP_OR -7,59E-04 | -7,22E-04 | 1,98E-05 | 8,48E+07 | 6,87E+04
RP_PVO -1,32E-02 | -1,03E-02 | 1,29E-03 | 9,54E+07 | 1,45E+06
RP_VOT -2,14E-02 | -1,43E-02 | 2,83E-03 | 9,75E+07 | 1,54E+06
RPD_AND -1,46E-02 | -9,19E-03 | 2,35E-03 | 9,76E+07 | 1,35E+06
RPD_OR -8,19E-04 | -7,34E-04 | 1,99E-05 | 8,31E+07 | 1,30E+06
RPD_PVO -1,37E-02 | -1,02E-02 | 1,47E-03 | 8,85E+07 | 1,68E+06
RPD_VOT -2,01E-02 | -1,54E-02 | 2,01E-03 | 9,79E+07 | 3,19E+05
CF_AND -1,58E-02 | -9,57E-03 | 1,96E-03 | 7,40E+07 | 2,05E+06
CF_OR -8,31E-04 | -7,45E-04 | 1,94E-05 | 6,86E+07 | 9,81E+05
CF_PVO -1,32E-02 | -1,01E-02 | 1,19E-03 | 7,61E+07 | 1,08E+06
CF_VOT -2,33E-02 | -1,50E-02 | 2,33E-03 | 7,87E+07 | 4,87E+05
GR_AND -1,30E-02 | -9,06E-03 | 1,85E-03 | 1,39E+08 | 2,12E+06
GR_OR -3,83E-03 | -3,61E-03 | 1,01E-04 | 1,30E+08 | 2,00E+06
GR_PVO -1,99E-02 | -1,41E-02 | 2,20E-03 | 1,35E+08 | 3,56E+06
GR_VOT -2,39E-02 | -1,44E-02 | 2,88E-03 | 1,39E+08 | 6,37E+05
TABU_AND | .1 63E-02 | -9,81E-03 | 2,27E-03 | 9,26E+07 | 2,60E+06
TABU_OR -7,82E-04 | -7,40E-04 | 1,63E-05 | 8,21E+07 | 5,04E+04
TABU_PVO | _140E-02 | -1,01E-02 | 1,26E-03 | 9,14E+07 | 1,34E+06
TABU_VOT | .222E-02 | -1,53E-02 | 2,25E-03 | 9,37E+07 | 1,42E+06

Table C.9. Results of performance evaluations of hyperheuristic patterns on sta-f-83

Best Fit. Avg. Best Fit. Avg. Num. of Eval.
SR_AND -2,70E-03 | -2,64E-03 | 5,70E-05 | 1,27E+08 | 2,34E+05
SR_OR -1,29E-03 | -1,25E-03 | 1,74E-05 | 1,11E+08 | 5,86E+04
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SR_PVO -2,69E-03 | -2,68E-03 | 1,01E-05 | 1,21E+08 | 4,07E+06
SR_VOT -2,69E-03 | -2,68E-03 | 1,22E-05 | 1,26E+08 | 1,61E+06
RD_AND -2,70E-03 | -2,64E-03 | 5,47E-05 | 1,22E+08 | 3,71E+05
RD_OR -1,31E-03 | -1,25E-03 | 2,13E-05 | 1,12E+08 | 4,40E+04
RD_PVO -2,70E-03 | -2,68E-03 | 1,24E-05 | 1,27E+08 | 8,54E+05
RD_VOT -2,70E-03 | -2,67E-03 | 1,43E-05 | 1,22E+08 | 3,53E+05
RP_AND -2,69E-03 | -2,63E-03 | 5,72E-05 | 1,29E+08 | 2,37E+05
RP_OR -1,34E-03 | -1,25E-03 | 1,99E-05 | 1,12E+08 | 6,87E+04
RP_PVO -2,70E-03 | -2,68E-03 | 1,03E-05 | 1,28E+08 | 7,67E+04
RP_VOT -2,70E-03 | -2,67E-03 | 1,95E-05 | 1,29E+08 | 2,53E+05
RPD_AND -2,69E-03 | -2,63E-03 | 6,03E-05 | 1,28E+08 | 2,50E+05
RPD_OR -1,33E-03 | -1,26E-03 | 2,34E-05 | 1,11E+08 | 1,33E+06
RPD_PVO -2,70E-03 | -2,68E-03 | 1,04E-05 | 1,28E+08 | 8,00E+04
RPD_VOT | _269E-03 | -2,67E-03 | 1,28E-05 | 1,28E+08 | 2,19E+05
CF_AND -2,69E-03 | -2,64E-03 | 5,51E-05 | 9,37E+07 | 3,39E+06
CF_OR -1,31E-03 | -1,25E-03 | 2,01E-05 | 8,73E+07 | 3,79E+04
CF_PVO -2,70E-03 | -2,68E-03 | 9,26E-06 | 9,64E+07 | 3,73E+04
CF_VOT -2,69E-03 | -2,67E-03 | 1,55E-05 | 9,74E+07 | 1,06E+06
GR_AND -2,70E-03 | -2,62E-03 | 6,39E-05 | 2,06E+08 | 6,03E+05
GR_OR -2,31E-03 | -2,23E-03 | 3,60E-05 | 1,91E+08 | 1,24E+05
GR_PVO -2,69E-03 | -2,68E-03 | 9,11E-06 | 1,89E+08 | 1,50E+05
GR_VOT -2,69E-03 | -2,68E-03 | 1,26E-05 | 2,06E+08 | 4,33E+05
TABU_AND | .2 70E-03 | -2,64E-03 | 5,36E-05 | 1,18E+08 | 3,81E+06
TABU_OR | .131E-03 | -1,26E-03 | 2,09E-05 | 1,08E+08 | 1,38E+06
TABU_PVO | 2 69E-03 | -2,68E-03 | 1,03E-05 | 1,22E+08 | 5,12E+04
TABU_VOT | .2 70E-03 | -2,68E-03 | 1,59E-05 | 1,22E+08 | 1,49E+05

Table C.10. Results of performance evaluations of hyperheuristic patterns on tre-s-92

Best Fit.

Avg. Best Fit.

Avg. Num. of Eval.

84



SR_AND -5,68E-02 | -4,12E-02 | 6,00E-03 | 1,24E+08 | 2,26E+05
SR_OR -3,99E-03 | -3,74E-03 | 7,39E-05 | 1,07E+08 | 3,67E+04
SR_PVO -5,95E-02 | -4,46E-02 | 526E-03 | 1,18E+08 | 3,54E+06
SR_VOT -1,85E-01 | -1,19E-01 | 2,56E-02 | 1,23E+08 | 2,51E+05
RD_AND -5,68E-02 | -4,06E-02 | 6,37E-03 | 1,19E+08 | 1,59E+06
RD_OR -4,16E-03 | -3,76E-03 | 1,16E-04 | 1,07E+08 | 1,40E+06
RD_PVO -5,05E-02 | -4,37E-02 | 3,99E-03 | 1,23E+08 | 1,46E+06
RD_VOT -1,92E-01 | -1,05E-01 | 2,47E-02 | 1,17E+08 | 1,65E+06
RP_AND -6,41E-02 | -4,19E-02 | 8,14E-03 | 1,25E+08 | 1,60E+06
RP_OR -3,98E-03 | -3,75E-03 | 9,60E-05 | 1,08E+08 | 1,43E+06
RP_PVO -5,88E-02 | -4,69E-02 | 5,77E-03 | 1,24E+08 | 7,35E+04
RP_VOT -1,72E-01 | -1,14E-01 | 2,02E-02 | 1,26E+08 | 2,92E+05
RPD_AND -6,58E-02 | -4,08E-02 | 7,44E-03 | 1,24E+08 | 1,45E+06
RPD_OR -4,03E-03 | -3,77E-03 | 8,58E-05 | 1,08E+08 | 6,80E+04
RPD_PVO -6,02E-02 | -4,56E-02 | 5,92E-03 | 1,20E+08 | 4,18E+06
RPD_VOT -2,17E-01 | -1,23E-01 | 2,96E-02 | 1,25E+08 | 2,70E+05
CF_AND -5,68E-02 | -4,17E-02 | 6,51E-03 | 9,56E+07 | 1,65E+05
CF_OR -3,89E-03 | -3,72E-03 | 7,49E-05 | 7,78E+07 | 7,27E+06
CF_PVO -5,75E-02 | -4,62E-02 | 5,85E-03 | 9,46E+07 | 3,95E+04
CF_VOT -1,56E-01 | -1,11E-01 | 2,12E-02 | 9,57E+07 | 6,59E+05
GR_AND -5,81E-02 | -4,20E-02 | 7,60E-03 | 1,97E+08 | 2,76E+06
GR_OR -1,19E-02 | -1,06E-02 | 4,52E-04 | 1,85E+08 | 5,46E+04
GR_PVO -8,77E-02 | -7,00E-02 | 7,51E-03 | 1,90E+08 | 8,20E+06
GR_VOT -2,08E-01 | -1,31E-01 | 2,49E-02 | 1,98E+08 | 6,45E+05
TABU_AND | _556E-02 | -4,07E-02 | 6,65E-03 | 1,15E+08 | 3,83E+06
TABU_OR | .418E-03 | -3,82E-03 | 8,62E-05 | 1,05E+08 | 3,15E+04
TABU_PVO | _568E-02 | -4,59E-02 | 5,56E-03 | 1,19E+08 | 4,16E+04
TABU_VOT | .2 00E-01 | -1,14E-01 | 2,39E-02 | 1,19E+08 | 2,04E+05

Table C.11. Results of performance evaluations of hyperheuristic patterns on uta-s-92
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Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -2,27E-02 | -1,89E-02 | 1,91E-03 | 9,74E+07 | 1,48E+06
SR_OR -1,24E-03 | -1,19E-03 | 1,55E-05 | 8,04E+07 | 1,25E+06

SR_PVO -1,57E-02 | -1,34E-02 | 8,47E-04 | 8,92E+07 | 2,93E+06
SR_VOT -2,89E-02 | -2,47E-02 | 1,71E-03 | 9,86E+07 | 9,83E+04
RD_AND -2,28E-02 | -1,79E-02 | 1,88E-03 | 9,71E+07 | 2,55E+05
RD_OR -1,26E-03 | -1,19E-03 | 1,94E-05 | 8,20E+07 | 2,70E+04

RD_PVO -1,21E-02 | -1,06E-02 | 6,77E-04 | 9,35E+07 | 3,88E+04
RD_VOT -2,75E-02 | -2,26E-02 | 2,00E-03 | 9,79E+07 | 2,49E+05
RP_AND -2,42E-02 | -1,88E-02 | 1,76E-03 | 9,89E+07 | 8,77E+04
RP_OR -1,25E-03 | -1,19E-03 | 1,63E-05 | 8,17E+07 | 7,21E+04

RP_PVO -1,55E-02 | -1,34E-02 | 8,90E-04 | 9,21E+07 | 1,51E+06

RP_VOT -2,79E-02 | -2,42E-02 | 1,74E-03 | 9,89E+07 | 1,53E+06
RPD_AND -2,35E-02 | -1,86E-02 | 2,02E-03 | 9,89E+07 | 7,38E+05
RPD_OR -1,23E-03 | -1,19E-03 | 1,44E-05 | 8,20E+07 | 5,91E+04
RPD_PVO -1,48E-02 | -1,34E-02 | 7,27E-04 | 8,74E+07 | 1,26E+06
RPD_VOT | .289E-02 | -2,53E-02 | 1,81E-03 | 9,90E+07 | 1,02E+05
CF_AND -2,35E-02 | -1,87E-02 | 1,94E-03 | 7,86E+07 | 1,95E+06
CF_OR -1,29-03 | -1,21E-03 | 3,15E-05 | 6,72E+07 | 8,39E+05

CF_PVO -1,46E-02 | -1,30E-02 | 6,71E-04 | 7,52E+07 | 4,17E+04
CF_VOT -2,89E-02 | -2,39E-02 | 1,99E-03 | 7,95E+07 | 6,79E+04
GR_AND -2,20E-02 | -1,88E-02 | 1,47E-03 | 1,42E+08 | 1,58E+05
GR_OR -3,68E-03 | -3,50E-03 | 8,20E-05 | 1,27E+08 | 1,99E+06

GR_PVO -2,28E-02 | -1,94E-02 | 1,21E-03 | 1,34E+08 | 3,37E+06
GR_VOT -2,91E-02 | -2,55E-02 | 1,75E-03 | 1,42E+08 | 1,84E+05
TABU_AND | .2 42E-02 | -1,85E-02 | 2,00E-03 | 9,44E+07 | 1,32E+06
TABU_OR -1,25E-03 | -1,21E-03 | 1,72E-05 | 7,98E+07 | 3,24E+04
TABU_PVO | _153E-02 | -1,35E-02 | 8,57E-04 | 8,94E+07 | 1,43E+06
TABU_VOT | .286E-02 | -2,44E-02 | 1,71E-03 | 9,44E+07 | 1,40E+06

Table C.12. Results of performance evaluations of hyperheuristic patterns on ute-s-92
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Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -1,79E-03 | -1,57E-03 | 1,09E-04 | 1,06E+08 | 6,45E+05
SR_OR -1,03E-03 | -9,73E-04 | 2,09E-05 | 9,31E+07 | 6,47E+04

SR_PVO -2,38E-03 | -2,19E-03 | 8,24E-05 | 1,04E+08 | 2,13E+06
SR_VOT -2,25E-03 | -2,05E-03 | 1,03E-04 | 1,05E+08 | 1,40E+06
RD_AND -1,86E-03 | -1,58E-03 | 8,60E-05 | 1,02E+08 | 1,63E+06
RD_OR -1,03E-03 | -9,70E-04 | 2,00E-05 | 9,42E+07 | 5,98E+04

RD_PVO -2,36E-03 | -2,13E-03 | 8,72E-05 | 1,06E+08 | 1,36E+06
RD_VOT -2,27E-03 | -2,01E-03 | 1,19E-04 | 1,00E+08 | 1,01E+06
RP_AND -1,86E-03 | -1,55E-03 | 1,14E-04 | 1,07E+08 | 5,97E+05
RP_OR -1,04E-03 | -9,69E-04 | 2,05E-05 | 9,38E+07 | 6,24E+04

RP_PVO -2,38E-03 | -2,17E-03 | 9,55E-05 | 1,07E+08 | 6,13E+04

RP_VOT -2,37E-03 | -2,05E-03 | 1,13E-04 | 1,07E+08 | 4,80E+05
RPD_AND -1,77E-03 | -1,56E-03 | 7,95E-05 | 1,05E+08 | 1,56E+06
RPD_OR -1,01E-03 | -9,73E-04 | 1,74E-05 | 9,29E+07 | 1,15E+06
RPD_PVO -2,40E-03 | -2,14E-03 | 1,08E-04 | 1,00E+08 | 2,09E+06
RPD_VOT | .229E-03 | -2,05E-03 | 1,02E-04 | 1,05E+08 | 1,21E+06
CF_AND -1,78E-03 | -1,54E-03 | 9,88E-05 | 8,18E+07 | 2,53E+06
CF_OR -1,01E-03 | -9,71E-04 | 1,90E-05 | 7,54E+07 | 6,61E+05

CF_PVO -2,35E-03 | -2,17E-03 | 8,50E-05 | 8,33E+07 | 1,08E+06
CF_VOT -2,26E-03 | -2,01E-03 | 1,02E-04 | 8,38E+07 | 1,11E+06
GR_AND -1,80E-03 | -1,56E-03 | 1,03E-04 | 1,56E+08 | 1,42E+06
GR_OR -1,95E-03 | -1,75E-03 | 4,80E-05 | 1,48E+08 | 8,84E+04

GR_PVO -2,47TE-03 | -2,27E-03 | 7,63E-05 | 1,55E+08 | 1,51E+05
GR_VOT -2,31E-03 | -2,10E-03 | 9,37E-05 | 1,55E+08 | 9,27E+05
TABU_AND | .1 86E-03 | -1,56E-03 | 1,24E-04 | 1,01E+08 | 2,39E+06
TABU_OR -1,07E-03 | -9,78E-04 | 2,03E-05 | 8,98E+07 | 1,22E+06
TABU_PVO | _233E-03 | -2,17E-03 | 9,43E-05 | 1,01E+08 | 1,36E+06
TABU_VOT | .231E-03 | -2,04E-03 | 1,05E-04 | 1,01E+08 | 1,44E+06
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Table C.13. Results of performance evaluations of hyperheuristic patterns on yor-f-83

Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -6,05E-03 | -5,21E-03 | 3,85E-04 | 1,30E+08 | 4,28E+05
SR_OR -2,48E-03 | -2,33E-03 | 4,24E-05 | 1,14E+08 | 1,45E+06

SR_PVO -8,85E-03 | -7,86E-03 | 4,99E-04 | 1,29E+08 | 2,46E+06
SR_VOT -1,01E-02 | -8,31E-03 | 6,89E-04 | 1,30E+08 | 3,76E+05
RD_AND -5,94E-03 | -4,89E-03 | 4,68E-04 | 1,20E+08 | 1,65E+06
RD_OR -2,45E-03 | -2,33E-03 | 4,79E-05 | 1,15E+08 | 1,40E+06

RD_PVO -8,13E-03 | -6,96E-03 | 3,85E-04 | 1,33E+08 | 6,86E+05
RD_VOT -7,84E-03 | -6,69E-03 | 5,73E-04 | 1,21E+08 | 1,87E+06
RP_AND -6,16E-03 | -5,25E-03 | 3,53E-04 | 1,31E+08 | 1,51E+06
RP_OR -2,43E-03 | -2,33E-03 | 3,93E-05 | 1,14E+08 | 1,47E+06

RP_PVO -8,71E-03 | -7,81E-03 | 4,56E-04 | 1,32E+08 | 1,07E+05

RP_VOT -9,90E-03 | -8,40E-03 | 7,57E-04 | 1,31E+08 | 1,66E+06
RPD_AND | .6 24E-03 | -5,15E-03 | 3,17E-04 | 1,31E+08 | 4,31E+05
RPD_OR -2,49E-03 | -2,38E-03 | 3,20E-05 | 1,14E+08 | 8,59E+04
RPD_PVO -8,76E-03 | -7,69E-03 | 3,89E-04 | 1,31E+08 | 8,36E+04
RPD_VOT -1,09E-02 | -8,52E-03 | 7,07E-04 | 1,31E+08 | 4,35E+05
CF_AND -6,28E-03 | -5,22E-03 | 3,29E-04 | 9,92E+07 | 4,90E+05
CF_OR -2,55E-03 | -2,41E-03 | 4,21E-05 | 7,83E+07 | 6,85E+06

CF_PVO -9,01E-03 | -7,67E-03 | 5,93E-04 | 9,93E+07 | 4,22E+04
CF_VOT -9,58E-03 | -8,13E-03 | 7,16E-04 | 9,94E+07 | 2,55E+05
GR_AND -5,90E-03 | -5,20E-03 | 3,29E-04 | 2,12E+08 | 2,79E+06
GR_OR -3,65E-03 | -3,55E-03 | 4,86E-05 | 2,00E+08 | 4,40E+04

GR_PVO -1,01E-02 | -9,07E-03 | 5,84E-04 | 1,99E+08 | 2,80E+06
GR_VOT -1,10E-02 | -8,93E-03 | 6,94E-04 | 2,14E+08 | 8,57E+05
TABU_AND | .587E-03 | -5,17E-03 | 3,73E-04 | 1,21E+08 | 4,07E+06
TABU_ OR | .251E-03 | -2,41E-03 | 3,90E-05 | 1,09E+08 | 2,68E+06
TABU_PVO | _899E-03 | -7,73E-03 | 5,01E-04 | 1,25E+08 | 1,83E+06
TABU_VOT | .1 05E-02 | -854E-03 | 8,02E-04 | 1,24E+08 | 1,31E+06
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Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -8,47E-02 | -5,88E-02 | 1,23E-02 | 1,29E+08 | 2,07E+06
SR_OR -9,31E-03 | -8,55E-03 | 2,58E-04 | 1,11E+08 | 5,22E+04

SR_PVO -1,00E-01 | -7,75E-02 | 8,30E-03 | 1,24E+08 | 4,00E+06
SR_VOT -1,28E-01 | -1,07E-01 | 1,03E-02 | 1,30E+08 | 2,64E+05
RD_AND -9,43E-02 | -5,73E-02 | 1,21E-02 | 1,26E+08 | 6,78E+05
RD_OR -9,75E-03 | -8,62E-03 | 3,64E-04 | 1,12E+08 | 5,28E+04

RD_PVO -9,62E-02 | -7,64E-02 | 8,57E-03 | 1,28E+08 | 3,86E+04
RD_VOT -1,28E-01 | -1,04E-01 | 9,62E-03 | 1,27E+08 | 5,63E+05
RP_AND -8,93E-02 | -5,82E-02 | 1,27E-02 | 1,30E+08 | 1,84E+06
RP_OR -1,01E-02 | -8,62E-03 | 3,59E-04 | 1,12E+08 | 7,12E+04

RP_PVO -1,09E-01 | -7,92E-02 | 9,36E-03 | 1,28E+08 | 1,71E+06

RP_VOT -1,32E-01 | -1,09E-01 | 1,07E-02 | 1,32E+08 | 2,51E+05
RPD_AND | .g33E-02 | -5,80E-02 | 1,23E-02 | 1,31E+08 | 2,69E+05
RPD_OR -9,28E-03 | -8,59E-03 | 2,74E-04 | 1,11E+08 | 1,46E+06
RPD_PVO -1,02E-01 | -7,80E-02 | 1,04E-02 | 1,23E+08 | 5,35E+06
RPD_VOT -1,28E-01 | -1,08E-01 | 1,05E-02 | 1,31E+08 | 2,85E+05
CF_AND -1,11E-01 | -5,70E-02 | 1,38E-02 | 9,58E+07 | 3,19E+06
CF_OR -9,43E-03 | -8,56E-03 | 3,22E-04 | 8,52E+07 | 9,39E+05

CF_PVO -9,62E-02 | -7,66E-02 | 8,67E-03 | 9,76E+07 | 6,93E+04
CF_VOT -1,39E-01 | -1,08E-01 | 9,25E-03 | 9,93E+07 | 1,53E+05
GR_AND -9,80E-02 | -6,02E-02 | 1,32E-02 | 2,12E+08 | 5,66E+05
GR_OR -4,13E-02 | -3,16E-02 | 3,05E-03 | 1,96E+08 | 2,57E+06

GR_PVO -1,25E-01 | -1,01E-01 | 8,70E-03 | 2,09E+08 | 1,57E+05
GR_VOT -1,35E-01 | -1,09E-01 | 1,19E-02 | 2,13E+08 | 6,79E+05
TABU_AND | .8 20E-02 | -5,51E-02 | 1,01E-02 | 1,20E+08 | 3,61E+06
TABU_OR | .928E-03 | -8,60E-03 | 2,74E-04 | 1,07E+08 | 6,21E+04
TABU_PVO | _100E-01 | -7,84E-02 | 8,58E-03 | 1,22E+08 | 1,01E+06
TABU_VOT | .128E-01 | -1,05E-01 | 1,00E-02 | 1,24E+08 | 1,03E+06
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Table C.14. Results of performance evaluations of hyperheuristic patterns on yue20011
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Table C.15. Results of performance evaluations of hyperheuristic patterns on yue20012

Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -6,33E-02 | -4,76E-02 | 8,44E-03 | 1,31E+08 | 1,61E+05
SR_OR -6,36E-03 | -6,05E-03 | 1,43E-04 | 1,12E+08 | 1,09E+06

SR_PVO -7,94E-02 | -5,85E-02 | 6,90E-03 | 1,20E+08 | 7,43E+04
SR_VOT -1,14E-01 | -9,33E-02 | 1,09E-02 | 1,30E+08 | 1,64E+06
RD_AND -6,17E-02 | -4,98E-02 | 6,13E-03 | 1,22E+08 | 2,94E+05
RD_OR -6,44E-03 | -6,07E-03 | 1,52E-04 | 1,14E+08 | 7,11E+04

RD_PVO -8,33E-02 | -6,34E-02 | 6,11E-03 | 1,29E+08 | 1,64E+06
RD_VOT -1,06E-01 | -9,10E-02 | 8,10E-03 | 1,23E+08 | 2,81E+05
RP_AND -7,04E-02 | -5,03E-02 | 8,93E-03 | 1,32E+08 | 1,36E+06
RP_OR -6,66E-03 | -6,06E-03 | 1,62E-04 | 1,13E+08 | 1,52E+06

RP_PVO -7,69E-02 | -6,04E-02 | 6,02E-03 | 1,29E+08 | 1,79E+06

RP_VOT -1,14E-01 | -9,42E-02 | 9,33E-03 | 1,32E+08 | 1,33E+06
RPD_AND | .8 20E-02 | -4,91E-02 | 9,59E-03 | 1,31E+08 | 1,54E+06
RPD_OR -6,61E-03 | -6,07E-03 | 1,56E-04 | 1,14E+08 | 1,14E+05
RPD_PVO -7,94E-02 | -5,93E-02 | 7,65E-03 | 1,24E+08 | 4,11E+06
RPD_VOT -1,14E-01 | -9,28E-02 | 1,01E-02 | 1,31E+08 | 2,02E+05
CF_AND -6,85E-02 | -4,75E-02 | 8,87E-03 | 9,54E+07 | 2,77E+06
CF_OR -6,67E-03 | -6,08E-03 | 1,86E-04 | 8,88E+07 | 5,40E+05

CF_PVO -7,25E-02 | -5,76E-02 | 5,53E-03 | 9,80E+07 | 1,19E+06
CF_VOT -1,11E-01 | -8,85E-02 | 8,68E-03 | 9,91E+07 | 1,16E+06
GR_AND -6,67E-02 | -4,81E-02 | 8,09E-03 | 2,15E+08 | 3,82E+05
GR_OR -2,50E-02 | -2,08E-02 | 1,43E-03 | 2,01E+08 | 8,79E+04

GR_PVO -1,09E-01 | -8,59E-02 | 1,08E-02 | 1,98E+08 | 7,66E+04
GR_VOT -1,11E-01 | -9,18E-02 | 9,90E-03 | 2,16E+08 | 4,75E+05
TABU_AND | .704E-02 | -4,77E-02 | 8,27E-03 | 1,25E+08 | 1,15E+05
TABU_OR | .6 72E-03 | -6,08E-03 | 1,78E-04 | 1,08E+08 | 2,75E+06
TABU_PVO | .794E-02 | -5,89E-02 | 6,19E-03 | 1,24E+08 | 1,59E+06
TABU_VOT | .1 06E-01 | -9,22E-02 | 8,75E-03 | 1,24E+08 | 1,47E+06
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Table C.16. Results of performance evaluations of hyperheuristic patterns on yue20013

Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -2,50E-01 | -1,64E-01 | 3,49E-02 | 1,43E+08 | 8,21E+05
SR_OR -1,67E-01 | -1,41E-01 | 1,01E-02 | 1,24E+08 | 9,68E+05

SR_PVO -2,50E-01 | -2,50E-01 | 0,00E+00 | 1,40E+08 | 5,30E+06
SR_VOT -2,50E-01 | -2,39E-01 | 1,71E-02 | 1,43E+08 | 5,18E+05
RD_AND -1,52E-01 | -8,33E-02 | 3,12E-02 | 1,26E+08 | 6,31E+06
RD_OR -1,85E-01 | -1,41E-01 | 1,20E-02 | 1,25E+08 | 1,42E+06

RD_PVO -2,50E-01 | -2,23E-01 | 1,29E-02 | 1,44E+08 | 2,14E+05
RD_VOT -1,32E-01 | -1,04E-01 | 1,17E-02 | 1,39E+08 | 2,11E+06
RP_AND -2,50E-01 | -1,63E-01 | 3,46E-02 | 1,44E+08 | 1,97E+06
RP_OR -1,61E-01 | -1,39E-01 | 9,81E-03 | 1,25E+08 | 1,38E+06

RP_PVO -2,50E-01 | -2,50E-01 | 0,00E+00 | 1,45E+08 | 1,07E+05

RP_VOT -2,50E-01 | -2,37E-01 | 1,80E-02 | 1,45E+08 | 1,35E+06
RPD_AND | .2 50E-01 | -1,57E-01 | 3,89E-02 | 1,45E+08 | 1,00E+06
RPD_OR -1,92E-01 | -1,40E-01 | 1,44E-02 | 1,24E+08 | 9,84E+05
RPD_PVO -2,50E-01 | -2,50E-01 | 0,00E+00 | 1,42E+08 | 4,37E+06
RPD_VOT -2,50E-01 | -2,40E-01 | 1,59E-02 | 1,44E+08 | 4,45E+05
CF_AND -2,27E-01 | -1,61E-01 | 3,02E-02 | 1,06E+08 | 1,26E+06
CF_OR -1,72E-01 | -1,36E-01 | 1,10E-02 | 8,41E+07 | 7,75E+06

CF_PVO -2,50E-01 | -2,50E-01 | 0,00E+00 | 9,87E+07 | 2,50E+06
CF_VOT -2,50E-01 | -2,41E-01 | 1,41E-02 | 1,06E+08 | 2,51E+05
GR_AND -2,50E-01 | -1,66E-01 | 3,52E-02 | 2,49E+08 | 3,95E+06
GR_OR -2,50E-01 | -2,32E-01 | 1,05E-02 | 2,33E+08 | 1,30E+05

GR_PVO -2,50E-01 | -2,50E-01 | 0,00E+00 | 2,39E+08 | 1,00E+07
GR_VOT -2,50E-01 | -2,46E-01 | 8,62E-03 | 2,51E+08 | 1,52E+06
TABU_AND | .227E-01 | -1,71E-01 | 2,56E-02 | 1,33E+08 | 4,40E+06
TABU_ OR | .167E-01 | -1,38E-01 | 1,03E-02 | 1,17E+08 | 1,53E+05
TABU_PVO | _250E-01 | -2,50E-01 | 0,00E+00 | 1,35E+08 | 1,21E+06
TABU_VOT | .250E-01 | -2,42E-01 | 1,47E-02 | 1,36E+08 | 1,23E+06
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Table C.17. Results of performance evaluations of hyperheuristic patterns on yue20021

Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -2,76E-02 | -1,85E-02 | 4,01E-03 | 1,32E+08 | 1,59E+06
SR_OR -3,69E-03 | -3,25E-03 | 1,33E-04 | 1,12E+08 | 4,78E+04

SR_PVO -4,03E-02 | -3,18E-02 | 3,76E-03 | 1,31E+08 | 5,41E+04

SR_VOT -5,38E-02 | -4,00E-02 | 6,28E-03 | 1,33E+08 | 3,62E+05
RD_AND -2,82E-02 | -1,78E-02 | 4,23E-03 | 1,27E+08 | 7,97E+05
RD_OR -3,62E-03 | -3,24E-03 | 1,48E-04 | 1,14E+08 | 5,02E+04

RD_PVO -3,50E-02 | -2,84E-02 | 3,09E-03 | 1,33E+08 | 5,45E+04
RD_VOT -4,67E-02 | -3,30E-02 | 4,92E-03 | 1,28E+08 | 8,41E+05
RP_AND -2,50E-02 | -1,83E-02 | 3,12E-03 | 1,34E+08 | 1,28E+06

RP_OR -3,54E-03 | -3,20E-03 | 1,35E-04 | 1,14E+08 | 5,07E+04

RP_PVO -4,03E-02 | -3,24E-02 | 3,65E-03 | 1,31E+08 | 1,74E+06

RP_VOT -4,95E-02 | -3,99E-02 | 5,13E-03 | 1,35E+08 | 3,46E+05

RPD_AND | .2 84E-02 | -1,82E-02 | 4,02E-03 | 1,34E+08 | 3,53E+05
RPD_OR -3,74E-03 | -3,34E-03 | 1,28E-04 | 1,13E+08 | 1,20E+06
RPD_PVO -4,00E-02 | -3,12E-02 | 3,12E-03 | 1,26E+08 | 4,73E+06
RPD_VOT -4,85E-02 | -3,91E-02 | 4,80E-03 | 1,35E+08 | 3,03E+05
CF_AND -2,94E-02 | -1,83E-02 | 3,90E-03 | 9,80E+07 | 3,30E+06
CF_OR -3,85E-03 | -3,38E-03 | 1,42E-04 | 8,81E+07 | 9,05E+04

CF_PVO -3,97E-02 | -3,08E-02 | 3,32E-03 | 9,97E+07 | 5,14E+04
CF_VOT -4,95E-02 | -3,70E-02 | 5,20E-03 | 1,01E+08 | 1,85E+05
GR_AND -3,03E-02 | -1,74E-02 | 3,55E-03 | 2,22E+08 | 1,11E+06
GR_OR -1,47E-02 | -1,22E-02 | 1,01E-03 | 2,03E+08 | 3,38E+06

GR_PVO -4,90E-02 | -3,84E-02 | 5,57E-03 | 2,14E+08 | 6,62E+06
GR_VOT -5,68E-02 | -3,97E-02 | 7,34E-03 | 2,23E+08 | 7,89E+05
TABU_AND | .313E-02 | -1,80E-02 | 4,71E-03 | 1,23E+08 | 3,71E+06
TABU_OR | .375E-03 | -3,39E-03 | 1,32E-04 | 1,09E+08 | 8,76E+05
TABU_PVO | _424E-02 | -3,20E-02 | 4,29E-03 | 1,26E+08 | 1,21E+06
TABU_VOT | .610E-02 | -4,07E-02 | 6,02E-03 | 1,27E+08 | 1,13E+06




Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -1,00E-02 | -8,22E-03 | 1,03E-03 | 1,30E+08 | 4,01E+05
SR_OR -2,51E-03 | -2,38E-03 | 6,64E-05 | 1,11E+08 | 1,38E+06

SR_PVO -1,38E-02 | -1,19E-02 | 8,58E-04 | 1,28E+08 | 2,58E+06
SR_VOT -1,40E-02 | -1,17E-02 | 1,04E-03 | 1,28E+08 | 1,68E+06
RD_AND -1,01E-02 | -8,08E-03 | 9,35E-04 | 1,23E+08 | 9,98E+05
RD_OR -2,58E-03 | -2,34E-03 | 7,65E-05 | 1,13E+08 | 4,27E+04

RD_PVO -1,29E-02 | -1,08E-02 | 9,94E-04 | 1,30E+08 | 2,13E+06
RD_VOT -1,35E-02 | -1,09E-02 | 1,17E-03 | 1,25E+08 | 1,05E+06
RP_AND -9,96E-03 | -8,17E-03 | 8,86E-04 | 1,31E+08 | 1,36E+06
RP_OR -2,54E-03 | -2,37E-03 | 8,36E-05 | 1,12E+08 | 7,96E+05

RP_PVO -1,42E-02 | -1,18E-02 | 9,19E-04 | 1,31E+08 | 8,44E+04

RP_VOT -1,36E-02 | -1,16E-02 | 9,66E-04 | 1,31E+08 | 1,75E+06
RPD_AND | .1 04E-02 | -8,27E-03 | 9,44E-04 | 1,30E+08 | 1,67E+06
RPD_OR -2,70E-03 | -2,48E-03 | 8,81E-05 | 1,13E+08 | 4,94E+04
RPD_PVO -1,46E-02 | -1,19E-02 | 9,10E-04 | 1,28E+08 | 3,72E+06
RPD_VOT -1,38E-02 | -1,19E-02 | 9,01E-04 | 1,30E+08 | 4,41E+05
CF_AND -1,00E-02 | -8,23E-03 | 9,30E-04 | 9,54E+07 | 3,24E+06
CF_OR -2,90E-03 | -2,54E-03 | 9,22E-05 | 8,57E+07 | 1,16E+06

CF_PVO -1,40E-02 | -1,18E-02 | 9,94E-04 | 9,72E+07 | 4,15E+04
CF_VOT -1,45E-02 | -1,16E-02 | 9,20E-04 | 9,81E+07 | 1,55E+06
GR_AND -1,03E-02 | -8,15E-03 | 8,79E-04 | 2,12E+08 | 1,32E+06
GR_OR -7,41E-03 | -6,72E-03 | 2,81E-04 | 1,98E+08 | 1,37E+05

GR_PVO -1,63E-02 | -1,31E-02 | 1,11E-03 | 2,01E+08 | 6,54E+06
GR_VOT -1,49E-02 | -1,20E-02 | 1,06E-03 | 2,13E+08 | 1,25E+06
TABU_AND | .1 10E-02 | -8,37E-03 | 1,15E-03 | 1,24E+08 | 4,53E+05
TABU_OR | .2 75E-03 | -2,52E-03 | 7,91E-05 | 1,07E+08 | 2,15E+06
TABU_PVO | _147E-02 | -1,17E-02 | 1,06E-03 | 1,24E+08 | 4,32E+04
TABU_VOT | .143E-02 | -1,17E-02 | 9,34E-04 | 1,24E+08 | 3,20E+05
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Table C.18. Results of performance evaluations of hyperheuristic patterns on yue20022
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Table C.19. Results of performance evaluations of hyperheuristic patterns on yue20023

Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -1,40E-02 | -1,23E-02 | 7,45E-04 | 1,38E+08 | 1,31E+06
SR_OR -1,37E-02 | -1,33E-02 | 1,84E-04 | 1,21E+08 | 9,60E+04

SR_PVO -1,57E-02 | -1,51E-02 | 2,91E-04 | 1,32E+08 | 3,17E+06
SR_VOT -1,56E-02 | -1,41E-02 | 5,63E-04 | 1,38E+08 | 1,08E+06
RD_AND -1,30E-02 | -1,16E-02 | 7,62E-04 | 1,30E+08 | 4,49E+06
RD_OR -1,38E-02 | -1,34E-02 | 1,87E-04 | 1,23E+08 | 1,74E+06

RD_PVO -1,50E-02 | -1,44E-02 | 2,43E-04 | 1,41E+08 | 8,37E+04
RD_VOT -1,37E-02 | -1,29E-02 | 3,27E-04 | 1,33E+08 | 3,25E+06
RP_AND -1,40E-02 | -1,23E-02 | 7,20E-04 | 1,41E+08 | 1,14E+06
RP_OR -1,40E-02 | -1,34E-02 | 1,82E-04 | 1,23E+08 | 7,95E+05

RP_PVO -1,57E-02 | -1,51E-02 | 2,99E-04 | 1,41E+08 | 1,28E+06

RP_VOT -1,53E-02 | -1,41E-02 | 5,38E-04 | 1,37E+08 | 4,51E+06
RPD_AND | .1 42E-02 | -1,25E-02 | 8,20E-04 | 1,40E+08 | 1,30E+06
RPD_OR -1,40E-02 | -1,34E-02 | 2,33E-04 | 1,21E+08 | 1,44E+06
RPD_PVO -1,55E-02 | -1,50E-02 | 2,57E-04 | 1,40E+08 | 1,62E+06
RPD_VOT -1,56E-02 | -1,41E-02 | 4,77E-04 | 1,40E+08 | 1,45E+06
CF_AND -1,45E-02 | -1,26E-02 | 8,45E-04 | 1,04E+08 | 9,49E+05
CF_OR -1,39E-02 | -1,33E-02 | 1,85E-04 | 8,21E+07 | 7,88E+06

CF_PVO -1,57E-02 | -1,51E-02 | 3,23E-04 | 1,04E+08 | 5,32E+04
CF_VOT -1,54E-02 | -1,41E-02 | 5,22E-04 | 1,04E+08 | 6,80E+05
GR_AND -1,39E-02 | -1,24E-02 | 7,99E-04 | 2,36E+08 | 4,74E+06
GR_OR -1,53E-02 | -1,50E-02 | 1,60E-04 | 2,25E+08 | 2,28E+05

GR_PVO -1,57E-02 | -1,55E-02 | 1,34E-04 | 2,29E+08 | 9,79E+06
GR_VOT -1,55E-02 | -1,46E-02 | 3,20E-04 | 2,37E+08 | 4,93E+06
TABU_AND | .1 40E-02 | -1,25E-02 | 6,92E-04 | 1,32E+08 | 2,33E+06
TABU_OR | .137E-02 | -1,34E-02 | 1,45E-04 | 1,15E+08 | 2,08E+06
TABU_PVO | _157E-02 | -1,52E-02 | 2,96E-04 | 1,32E+08 | 1,56E+06
TABU_VOT | .152E-02 | -1,41E-02 | 5,25E-04 | 1,32E+08 | 1,91E+06




Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -1,29E-02 | -8,49E-03 | 1,55E-03 | 1,28E+08 | 1,24E+08
SR_OR -3,08E-03 | -2,62E-03 | 1,18E-04 | 1,14E+08 | 1,10E+08

SR_PVO -1,80E-02 | -1,50E-02 | 1,46E-03 | 1,29E+08 | 1,21E+08
SR_VOT -2,01E-02 | -1,54E-02 | 2,34E-03 | 1,29E+08 | 1,23E+08
RD_AND -1,08€-02 | -8,25E-03 | 1,37E-03 | 1,22E+08 | 1,20E+08
RD_OR -2,83E-03 | -2,56E-03 | 8,92E-05 | 1,15E+08 | 1,12E+08

RD_PVO -1,75E-02 | -1,35E-02 | 1,30E-03 | 1,32E+08 | 1,27E+08
RD_VOT -1,81E-02 | -1,34E-02 | 1,70E-03 | 1,21E+08 | 1,20E+08
RP_AND -1,18E-02 | -8,26E-03 | 1,56E-03 | 1,30E+08 | 1,25E+08
RP_OR -3,20E-03 | -2,60E-03 | 1,17E-04 | 1,15E+08 | 1,12E+08

RP_PVO -1,90E-02 | -1,51E-02 | 1,46E-03 | 1,32E+08 | 1,28E+08

RP_VOT -2,05E-02 | -1,51E-02 | 1,93E-03 | 1,31E+08 | 1,21E+08
RPD_AND | .1 23E-02 | -8,23E-03 | 1,71E-03 | 1,30E+08 | 1,24E+08
RPD_OR -3,13E-03 | -2,70E-03 | 1,02E-04 | 1,14E+08 | 1,11E+08
RPD_PVO -1,77E-02 | -1,50E-02 | 1,37E-03 | 1,31E+08 | 1,27E+08
RPD_VOT -2,11E-02 | -1,56E-02 | 2,54E-03 | 1,30E+08 | 1,25E+08
CF_AND -1,16E-02 | -8,12E-03 | 1,67E-03 | 9,30E+07 | 9,25E+07
CF_OR -2,90E-03 | -2,77E-03 | 8,36E-05 | 8,74E+07 | 8,66E+07

CF_PVO -1,82E-02 | -1,45E-02 | 1,43E-03 | 9,86E+07 | 9,72E+07
CF_VOT -2,01E-02 | -1,49E-02 | 1,87E-03 | 9,87E+07 | 9,52E+07
GR_AND -1,35E-02 | -8,61E-03 | 1,61E-03 | 2,12E+08 | 1,97E+08
GR_OR -7,62E-03 | -7,02E-03 | 2,37E-04 | 1,97E+08 | 1,87E+08

GR_PVO -2,02E-02 | -1,66E-02 | 1,99E-03 | 1,99E+08 | 1,85E+08
GR_VOT -2,14E-02 | -1,62E-02 | 2,27E-03 | 2,13E+08 | 1,99E+08
TABU_AND | .1 20E-02 | -8,13E-03 | 1,73E-03 | 1,24E+08 | 1,19E+08
TABU_OR | .294E-03 | -2,73E-03 | 8,73E-05 | 1,09E+08 | 1,07E+08
TABU_PVO | _181E-02 | -1,44E-02 | 1,48E-03 | 1,25E+08 | 1,22E+08
TABU_VOT | .212E-02 | -1,52E-02 | 2,08E-03 | 1,24E+08 | 1,19E+08
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Table C.20. Results of performance evaluations of hyperheuristic patterns on yue20031



Best Fit. Avg. Best Fit. Avg. Num. of Eval.

SR_AND -3,98E-03 | -3,31E-03 | 2,83E-04 | 1,24E+08 | 7,51E+05
SR_OR -1,82E-03 | -1,70E-03 | 4,24E-05 | 1,10E+08 | 1,41E+06

SR_PVO -6,00E-03 | -4,92E-03 | 4,28E-04 | 1,21E+08 | 4,05E+06
SR_VOT -5,47E-03 | -4,55E-03 | 4,36E-04 | 1,23E+08 | 1,69E+06
RD_AND -3,56E-03 | -3,11E-03 | 2,11E-04 | 1,20E+08 | 2,00E+06
RD_OR -1,94E-03 | -1,69E-03 | 5,47E-05 | 1,12E+08 | 4,40E+04

RD_PVO -5,33E-03 | -4,51E-03 | 3,66E-04 | 1,27E+08 | 1,69E+06
RD_VOT -4,95E-03 | -4,20E-03 | 3,60E-04 | 1,20E+08 | 1,67E+06
RP_AND -3,98E-03 | -3,32E-03 | 2,85E-04 | 1,25E+08 | 8,15E+05
RP_OR -1,83E-03 | -1,70E-03 | 4,32E-05 | 1,12E+08 | 5,86E+04

RP_PVO -5,73E-03 | -4,95E-03 | 3,00E-04 | 1,28E+08 | 1,69E+05

RP_VOT -5,68E-03 | -4,44E-03 | 4,45E-04 | 1,21E+08 | 5,12E+06
RPD_AND | _380E-03 | -3,27E-03 | 2,61E-04 | 1,24E+08 | 1,73E+06
RPD_OR -1,92E-03 | -1,79E-03 | 4,64E-05 | 1,11E+08 | 9,16E+04
RPD_PVO -6,15E-03 | -5,07E-03 | 4,62E-04 | 1,27E+08 | 2,09E+06
RPD_VOT -5,11E-03 | -4,47E-03 | 3,09E-04 | 1,25E+08 | 7,78E+05
CF_AND -3,95E-03 | -3,29E-03 | 2,97E-04 | 9,25E+07 | 3,25E+06
CF_OR -2,10E-03 | -1,85E-03 | 5,89E-05 | 8,66E+07 | 9,50E+04

CF_PVO -6,08E-03 | -4,83E-03 | 4,32E-04 | 9,72E+07 | 4,61E+04
CF_VOT -5,61E-03 | -4,44E-03 | 3,77E-04 | 9,52E+07 | 1,27E+06
GR_AND -3,90E-03 | -3,22E-03 | 2,90E-04 | 1,97E+08 | 1,94E+06
GR_OR -4,08E-03 | -3,73E-03 | 1,05E-04 | 1,87E+08 | 2,15E+05

GR_PVO -6,13E-03 | -4,92E-03 | 4,14E-04 | 1,85E+08 | 1,86E+06
GR_VOT -5,79E-03 | -4,67E-03 | 4,26E-04 | 1,99E+08 | 1,92E+06
TABU_AND | .413E-03 | -3,25E-03 | 3,36E-04 | 1,19E+08 | 1,03E+06
TABU_OR | .1 96E-03 | -1,81E-03 | 4,76E-05 | 1,07E+08 | 3,13E+06
TABU_PVO | _659E-03 | -4,93E-03 | 4,58E-04 | 1,22E+08 | 4,09E+04
TABU_VOT | .569E-03 | -4,49E-03 | 4,24E-04 | 1,19E+08 | 5,29E+05
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Table C.21. Results of performance evaluations of hyperheuristic patterns on yue20032
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