
Hyper-heuristics learning a varying set of

low-level heuristics

M.M�s�r*\, K.Verbeeck*\, G.Vanden Berghe*\
*CODeS, KaHo Sint-Lieven

{mustafa.misir,katja.verbeeck,greet.vandenberghe}@kahosl.be

P. De Causmaecker\
\CODeS, Department of Computer Science,

K.U.Leuven Campus Kortrijk

patrick.decausmaecker@kuleuven-kortrijk.be

The main motivation behind using hyper-heuristics is related to providing ge-
nerality for solving di�erent combinatorial optimisation problems. Hyper-heuristics
perform on a higher level than traditional search and optimisation strategies.
They operate on a set of solution approaches (i.e. low-level heuristics) rather
than on the set of solutions directly. The performance of heuristics can vary
from a problem(-instance) to a problem(-instance). They may even behave di�e-
rently in various search regions of one problem. Therefore, using a management
mechanism on top of a number of search algorithms can help to �nd the most ap-
propriate heuristics to apply. This kind of management can be handled by choice

hyper-heuristics. A simple choice hyper-heuristic consists of a heuristic selection

mechanism and a move acceptance mechanism. While a heuristic selection mecha-
nism chooses heuristics for applying to a solution(s) at hand, a move acceptance
mechanism concludes whether the new solution(s) is good enough to accept.

In this study, we focus on the heuristic selection part. We propose a method
for determining the set of best performing heuristics that should be used during
di�erent phases of a search. This subset is formed based on the relative impro-
vement per execution time of each heuristic. At the end of each phase, heuristics
are ranked according to some quality related values (quality index). That is, the
quality index of the best performing heuristic is set to n and for the worst heu-
ristic, this value is set to 1. The index value of heuristics that do not provide
any improvement are automatically set to 1. All heuristics which have a quality
index value lower than average are excluded from the search for the next phase.
In addition, when the set of best performing heuristics becomes too small, all
the excluded heuristics are entered in the heuristic set again, and the algorithm
repeats itself.

We apply our new hyper-heuristic approach to a set of home care scheduling
problem instances.


