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Abstract

In this paper we propose a new hyper-heuristic that is composed of a simple selection mecha-
nism based on a learning automaton and a new acceptance mechanism, i.e. the Iteration Limited
Threshold Accepting criterion. This hyper-heuristic is applied to the challenging Traveling Tour-
nament Problem. We show that the new hyper-heuristic method consistently outperforms the
Simple Random hyper-heuristic even with a small number of low-level heuristics. Moreover, our
method, although very general, generates high-quality solutions for the known Traveling Tour-
nament Problem benchmarks and offers new solutions for the recently added Super instances.

1 Introduction

Boosting search with learning mechanisms is currently an important challenge within the field of
meta-heuristic research. We consider approaches for combinatorial optimisation problems. Learning
is especially interesting in combination with hyper-heuristics that try to lift the search on a more
general, problem independent level [4]. When using a hyper-heuristic framework, the actual search
takes place at a more abstract level, i.e. in the space of domain applicable low-level heuristics (LLHs)
rather than in the space of possible problem solutions. In this way the search process does not focus
on domain specific data, but on general qualities such as changes in fitness or gain or the execution
time of the search process. A traditional hyper-heuristic consists of two sub-mechanisms: a heuristic
selection mechanism to choose the best LLH for generating a new (partial or complete) solution in
the current optimization step and an acceptance mechanism to decide on the acceptability of the
new solution.

In this paper we propose a new learning based selection mechanism as well as a new acceptance
mechanism. For the selection mechanism we were inspired by simple learning devices, called learn-
ing automata [13]. Learning Automata (LA) are simple reinforcement learning devices originally
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introduced to study human and/or animal behavior. The objective of an automaton is to learn
optimal actions based on past experience. The internal state of the learning device is described
as a probability distribution according to which actions should be chosen. These probabilities are
adjusted with some reinforcement scheme according to the success or failure of the actions taken.
An important update scheme is the linear reward-penalty scheme. The philosophy is essentially
to increase the probability of an action when it results in a success and to decrease it when the
response is a failure. This form of reinforcement learning, which also has its roots in psychology,
can be viewed as hill-climbing in probability space. The field is well-founded in the sense that the
theory shows interesting convergence results. In the approach that we present in this paper, the
action space of the LA will be the set of LLHs and the goal for the learning device is to learn to
select the appropriate LLH(s) for the problem or the problem instance at hand.

Next, we also introduce a new move acceptance mechanism called Iteration Limited Threshold
Accepting (ILTA). The idea is to only accept a worsening solution under certain conditions, namely
1) after a predefined number of worsening moves has been considered and 2) if the quality of the
worsening solution is within a range of the current best solution. ILTA tries to prevent missing
good moves to continue with.

Our new hyper-heuristic is tested on the challenging Traveling Tournament Problem (TTP). We
show that the method consistently outperforms the Simple Random (SR) hyper-heuristic even with
a small number of LLHs. In addition, the simple yet general method easily generates high-quality
solutions for the known TTP benchmarks and offers new solutions for the recently added Super
instances. We conclude that the learning hyper-heuristic can compete with the results obtained by
state of the art solution methods for the TTP.

In the remainder of this paper we introduce the LA based selection mechanism and the new
acceptance criterion mechanism in sections 2 and 3 respectively. We shortly describe the TTP
problem in section 4, while our experimental results are shown and discussed in section 5. We
finally conclude in the last section.

2 Learning Automata Based Selection Mechanism

Formally, a learning automaton is described by a quadruple {A, β, p, U} where A = {a1, . . . , an} is
the set of possible actions the automaton can perform, p is the probability distribution over these
actions, β(t) is a random variable between 0 and 1 representing the environmental response, and U
is a learning scheme used to update p.

A single automaton is connected in a feedback loop with its environment (Figure 1). Actions
chosen by the automaton are given as input to the environment and the environmental response
to this action serves as input to the automaton. Several automaton update schemes with different
properties have been studied. Important examples of linear update schemes are linear reward-
penalty, linear reward-inaction and linear reward-ε-penalty. The philosophy of these schemes is
essentially to increase the probability of an action when it results in a success and to decrease it
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Figure 1: A learning automaton put into a feedback loop with its environment from [15]

when the response is a failure. The general update scheme (U) is given by:

pi(t+ 1) = pi(t) +λ1 β(t)(1− pi(t))
−λ2(1− β(t))pi(t) (1)
if ai is the action taken at time step t

pj(t+ 1) = pj(t) −λ1 β(t)pj(t)
+λ2(1− β(t))[(r − 1)−1 − pj(t)] (2)
if aj 6= ai

with r the number of actions of the action set A. The constants λ1 and λ2 are the reward and
penalty parameters respectively. When λ1 = λ2 the algorithm is referred to as linear reward-
penalty (LR−P ), when λ2 = 0 it is referred to as linear reward-inaction (LR−I) and when λ2 is small
compared to λ1 it is called linear reward-ε-penalty (LR−εP ).

In this study, actions will be interpreted as LLHs, so according to Equations 1 and 2, the selection
probabilities will be changed based on how they perform. The reward signal is chosen as follows:
when a move results in a better solution than the best solution found we update the probabilities
of the corresponding LLHs with a reward of 1, on the other hand when no better solution is found
we use 0 reward. This simple binary reward signal uses only little information, nevertheless we will
see that it is powerful enough.

Additionally, in order to investigate the effect of forgetting previously learned information about
the performance of LLHs, we used a restarting mechanism, which at some predetermined iteration
step, resets the probabilities (pi) of each heuristic (hi) to their initial values (1/r). The underlying
idea is that in optimization problems, generating better solutions is typically easier at the early
stages of the optimization process. It gets harder to improve current solutions in further stages.
This is illustrated in Figure 2, which shows the evolution of the quality of the best solution for a
SR hyper-heuristic on a TTP instance. We expect that the performance of a particular LLH differs
in different iteration stages.
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Figure 2: Solution samples from a SR hyper-heuristic on a TTP instance (NL12)

3 Iteration Limited Threshold Accepting

Iteration Limited Threshold Accepting (ILTA) is a move acceptance mechanism that tries to provide
efficient cooperation between intensification and diversification. The pseudo-code of ILTA is given
in Algorithm 1. It works by comparing the fitness values of the current and newly generated

Algorithm 1 ILTA Move Acceptance
Require: k ≥ 0 ∧Rε(1.00 :∞)

if (f(S′) ≤ f(S)) then
S ⇐ S′

else if (w iterations ≥ k) and (f(S′) < f(Sb)×R) then
S ⇐ S′

end if

solutions. First, when a heuristic is selected and applied to generate a new solution, its fitness
value is compared via an improving or equal (IE) move acceptance [3]. If the new solution is a
non-worsening solution, then it is accepted and replaces the current one (f(S)). However, when
the new solution is a worsening move, in contrast with the IE acceptance criterion, ILTA checks
whether this worsening move is good enough to accept. Usually move acceptance mechanisms that
use a diversification method to allow for worsening moves, may accept a worsening solution at any
step. ILTA will act much more selective before accepting a worsening move. In ILTA, a worsening
move can only be accepted after a predefined number of consecutive worsening solutions (k) was
generated. For instance, if 100 consecutive worsening moves (w iterations = 100) were generated,
it is plausible to think that the current solution is not good enough to be improved. It makes
sense to accept a worsening move. In that case, a worsening move is accepted given that the new
solution’s fitness (f(S′)) is within a certain range R of the current best solution’s fitness (f(Sb)).
For example, choosing R = 1.05 means that a solution will be accepted within a range of 5% from
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the current best fitness. R is applied to prevent going to much worse solutions (the solutions that
can be found during early iterations).

4 The Traveling Tournament Problem

The Traveling Tournament Problem (TTP) is a very hard timetabling problem finding a feasible
home/away schedule for a double round robin tournament [8]. The optimization part of this problem
is to find the shortest traveling distance aggregated for all the teams. Generally in small or middle-
size countries such as European countries, if teams go to another city to play a match, after the
match, they return to their home city. In large countries on the other hand, cities are too far away
from each other, so that returning home between matches might not be an option.

Generally, solutions for the TTP should satisfy two different constraints : (c1) a team cannot
play more than three consecutive games at home or away and (c2) for the games between team ti
and tj, ti–tj cannot be followed by tj–ti. To handle them and optimize the solutions for the TTP,
we used five LLHs in the heuristic set of the hyper-heuristics. Brief definitions of them are:

SwapHomes : Swap home/away games between teams ti and tj
SwapTeams : Swap the schedule of teams ti and tj
SwapRounds : Swap two rounds by exchanging the assigned matches to ri with rj
SwapMatch : Swap matches of ti and tj for a given round r
SwapMatchRound : Swap matches of a team t in rounds ri and rj

The TTP instances1 that we used in this study were derived from the US National League
Baseball and the Super 14 Rugby League. The first group of instances (NL) consists of

⋃8
n=2 2n

teams and the second set of instances (Super) involves a number of teams that ranges from 4 to 14
(
⋃7
n=2 2n).

The fitness function that we used to measure the quality of the TTP solutions is determined as
f = d× (1 +

∑2
i=1wici). In this equation, d is the total traveling distance, c1 is the first constraint,

w1 is the weight of c1, c2 is the second constraint, w2 is the weight of c2. In this study, w1 and w2

are set to 10.

5 Experiments and Results

All experiments were carried out on Pentium Core 2 Duo 3 GHz PCs with 3.23 GB memory using the
JPPF grid computing platform2. Each hyper-heuristic was tested 10 times for each TTP instance.
We experimented with different values of λ1, namely {0.001, 0.002, 0.003, 0.005, 0.0075, 0.01} for the
LA based selection mechanism of the hyper-heuristics and the restart of the LA is made once after
107 iterations. The minimum number of consecutive worsening solutions k in ILTA was set to 100
and the value of R in the ILTA mechanism was set to {1.2, 1.2, 1.04, 1.04, 1.02, 1.02, 1.01} for NL4 7→
NL16 and {1.2, 1.2, 1.1, 1.02, 1.015, 1.01} for Super4 7→ Super14, respectively. Also, different time

1http://mat.gsia.cmu.edu/TOURN/
2Java Parallel Processing Framework: http://www.jppf.org/
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limits as stopping conditions were used for different TTP instances, namely 5 minutes for NL4–6 ∪
Super4–6, 30 minutes for NL8 ∪ Super8 and 1 hour for the rest (NL10–16 ∪ Super10–14).

The following tables present some performance related values about the tested hyper-heuristics
for each TTP instance. In the tables, we consider AVG : Average Fitness, MIN : Minimum Fitness,
MAX : Maximum Fitness, STD : Standard Deviation, TIME : Elapsed CPU Time in seconds to reach
to the corresponding best result, ITER: Number of Iterations to reach to the corresponding best
result.

SR NL4 NL6 NL8 NL10 NL12 NL14 NL16
AVG 8276 23916 39813 60226 115320 202610 286772
MIN 8276 23916 39721 59727 113222 201076 283133
MAX 8276 23916 40155 61336 116725 205078 289480
STD 0 0 181 468 1201 1550 2591
TIME ˜0 0.314 8 2037 2702 2365 2807
ITER 9,00E+00 1,39E+05 2,73E+06 5,17E+08 4,95E+08 3,17E+08 2,95E+08

Table 1: Results of the SR hyper-heuristic for the NL instances

LA NL4 NL6 NL8 NL10 NL12 NL14 NL16
AVG 8276 23916 39802 60046 115828 201256 288113
MIN 8276 23916 39721 59583 112873 196058 279330
MAX 8276 23916 40155 60780 117816 206009 293329
STD 0 0 172 335 1313 2779 4267
TIME ˜0 0.062 0.265 760 3508 1583 1726
ITER 1.90E+01 1.34E+03 8.23E+04 1.94E+08 6.35E+08 2.14E+08 1.79E+08
λ ALL 0.002(B) 0.002(B) 0.001 0.003 0.002 0.0075(R)

Table 2: The best results among the L R-I and LR R-I (L R-I + Restarting) hyper-heuristics for
the NL instances (In the λ line; B: Both L R-I & LR R-I, R: LR R-I)

SR Super4 Super6 Super8 Super10 Super12 Super14
AVG 71033 130365 182626 325888 472829 630751
MIN 63405 130365 182409 322761 469276 607925
MAX 88833 130365 184581 329789 475067 648648
STD 12283 0 687 2256 1822 13908
TIME 3.063 0.016 10 756 3147 2742
ITER 1.90E+01 2.11E+03 2.85E+06 1.81E+08 5.42E+08 3.50E+08

Table 3: Results of the SR hyper-heuristic for the Super instances
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LA Super4 Super6 Super8 Super10 Super12 Super14
AVG 71033 130365 182975 327152 475899 634535
MIN 63405 130365 182409 318421 467267 599296
MAX 88833 130365 184098 342514 485559 646073
STD 12283 0 558 6295 5626 13963
TIME ˜0 0.031 1 1731 3422 1610
ITER 8.00E+00 9.41E+02 1.49E+05 3.59E+08 5.12E+08 2.08E+08
λ ALL 0.01(B) 0.003(B) 0.002 0.005 0.001

Table 4: The best results among the L R-I and LR R-I (L R-I + Restarting) hyper-heuristics for
the Super instances (In the λ line; B: Both L R-I & LR R-I, R: LR R-I)

In Table 1 and Table 2, the results for the NL instances are given. For all the instances, the L R-I
or LR R-I found better results than the SR hyper-heuristic. This situation is also valid for Super
instances as can be seen from the results in Table 3 and Table 4. However, the learning rate (λ) of
each best LA hyper-heuristic (LAHH) may differ. So, the key point for LAHHs is finding the right
learning rates. Additionally, using a restarting mechanism can further improve the performance of
pure LAHHs. The restarting mechanism that we used here is very simple, but it works. Utilizing
more complicated or meaningful approaches may improve the performance even more.

When we compared the hyper-heuristic results to the best results in the literature, we noticed
that they are equal for the small TTP instances (NL4–8 ∪ Super4–8). The results that we provided
in this paper were produced using small execution times compared to some of the other approaches
that are included in Table 5 and Table 6.

TTP Inst. LHH Best Difference (%) LB
NL4 8276 8276 0,00% 8276
NL6 23916 23916 0,00% 23916
NL8 39721 39721 0,00% 39721
NL10 59583 59436 0,25% 58831
NL12 112873 110729 1,88% 108244
NL14 196058 188728 3,88% 182797
NL16 279330 261687 6,74% 249477
Super4 63405 63405 0,00% 63405
Super6 130365 130365 0,00% 130365
Super8 182409 182409 0,00% 182409
Super10 318421 316329 0,66% 316329
Super12 467267 – – 367812
Super14 599296 – – 467839

Table 5: Comparison between the best results obtained by the learning hyper-heuristics (LHHs)
and the current best results
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Author(s) Method NL4 NL6 NL8 NL10 NL12 NL14 NL16

Easton et al. [8] Linear Programming
(LP)

8276 23916 441113 312623

Benoist et al. [2] A combination of con-
straint programming
and lagrange relaxation

8276 23916 42517 68691 143655 301113 437273

Cardemil [5] Tabu Search 8276 23916 40416 66037 125803 205894 308413

Zhang [16] Unknown (data from
TTP website)

8276 24073 39947 61608 119012 207075 293175

Shen and Zhang
[14]

‘Greedy big step’ Meta-
heuristic

39776 61679 117888 206274 281660

Lim et al. [12] Simulated Annealing
and Hill-climbing

8276 23916 39721 59821 115089 196363 274673

LangFord [11] Unknown (data from
TTP website)

59436 112298 190056 272902

Crauwels and
Oudheusden [7]

Ant Colony Optimiza-
tion with Local Im-
provement

8276 23916 40797 67640 128909 238507 346530

Anagnostopoulos
et al. [1]

Simulated Annealing 8276 23916 39721 59583 111248 188728 263772

Gaspero and
Schaerf [9]

Composite Neighbor-
hood Tabu Search
Approach

59583 111483 190174 270063

Chen et al. [6] Ant-Based Hyper-
heuristic

8276 23916 40361 65168 123752 225169 321037

Van Hentenryck
and Vergados [10]

Population-Based Sim-
ulated Anneling

110729 188728 261687

This Paper Learning Automata
Hyper-heuristics with
Iteration Limited
Threshold Accepting

8276 23916 39721 59583 112873 196058 279330

Table 6: TTP solution methods compared, adapted from [6]

Finally, we compare our results to those obtained by the other TTP solution methods. Hyper-
heuristic approaches were also given [1, 6, 10]. As can be seen from Table 6, the best results were
generated by these hyper-heuristic techniques. The SR as a heuristic selection mechanism and
Simulated Annealing (SA) as a move acceptance criterion were used to construct a hyper-heuristic
structure in [1]. Actually, the paper does not mention the term hyper-heuristic, but it matches the
definition. The authors from [1] and [10] that is the extension of [1] generated the state of the art
results for most of the NL instances. Compared to our approach, they have a complicated move
acceptance mechanism with a lot of parameters to tune and their experimental runs took much
more time than ours. For instance, in [1], the best result for NL16 was found after almost 4 days
be it with slower PCs than ours. Actually, it is not fair to compare the results that were generated
using different computers, but, the execution time of 4 days is anyway a lot more than 1 hour (our
execution time for NL16). Another hyper-heuristic for the TTP was proposed in [6]. In this paper,
a population based hyper-heuristic that uses Ant Colony Optimisation (ACO) was utilized to solve
the NL instances. It reached the best results for NL4-6 and good enough feasible solutions for the
rest. Differently from [1], they used smaller execution times. Our results are better than those in
[6]. As a whole, these results show that hyper-heuristics have a great potential to solve the TTP.
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6 Discussion

Hyper-heuristics are easy-to-implement generic approaches to solve optimization problems. In this
study, we applied learning automata embedded hyper-heuristics to a set of TTP instances. We saw
that hyper-heuristics are promising approaches to solve the TTP as they perform well on different
optimization problems. The main aim of using hyper-heuristics was to provide good enough-soon
enough-cheap enough solutions within a reasonable execution time interval [4] at start. However,
in time, this aim has evolved to employing hyper-heuristics to beat the state of the art solutions
for different problems. On the TTP, the proposed hyper-heuristics reached better results than just
good enough solutions. So, this shows that hyper-heuristics are more powerful than what they were
initially intended for.

In this paper, we introduced both a learning based selection mechanism and an acceptance
criterion. In previous work, it turned out to be very difficult to show the advantage of learning in
the selection mechanism, but as we used the analytical well-studied theory of LA, we could show
the added advantage of learning. Based on the results of the experiments, it can be easily said that
LA gives more meaningful decisions for the heuristic selection process and reaches to better results
in earlier time than SR. The new hyper-heuristic method consistently outperforms the SR hyper-
heuristic with a few low-level heuristics. Moreover, the simple general method easily generates
high-quality solutions for the known TTP benchmarks and offers new solutions for the recently
added Super instances.

The new move acceptance mechanism tries to provide an efficient trade-off between intensifica-
tion and diversification. If the aim is to study the effectiveness of a heuristic selection, a mechanism
that accepts all moves (AM) can be employed. But, if the aim is to observe the performance of
a move acceptance mechanism in a hyper-heuristic, then the best option is to combine it with SR
heuristic selection. AM and SR are the blindest approaches that can be used in hyper-heuristics.
The results of the SR+ILTA combination for the NL and Super instances are very promising.

In future research we will apply the learning hyper-heuristics to other hard combinatorial opti-
mization problems to verify their general nature. We will experiment with both different LA update
schemes and with a dynamic evolving parameter of R for ILTA.
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