
Designing a Portfolio of Parameter Configurations for Online Algorithm Selection

Aldy Gunawan and Hoong Chuin Lau and Mustafa Mısır
Singapore Management University

80 Stamford Road
Singapore 178902

{aldygunawan, hclau, mustafamisir}@smu.edu.sg

Abstract
Algorithm portfolios seek to determine an effective set
of algorithms that can be used within an algorithm se-
lection framework to solve problems. A limited number
of these portfolio studies focus on generating different
versions of a target algorithm using different parame-
ter configurations. In this paper, we employ a Design
of Experiments (DOE) approach to determine a promis-
ing range of values for each parameter of an algorith-
m. These ranges are further processed to determine a
portfolio of parameter configurations, which would be
used within two online Algorithm Selection approach-
es for solving different instances of a given combinato-
rial optimization problem effectively. We apply our ap-
proach on a Simulated Annealing-Tabu Search (SA-TS)
hybrid algorithm for solving the Quadratic Assignment
Problem (QAP) as well as an Iterated Local Search (IL-
S) on the Travelling Salesman Problem (TSP). We also
generate a portfolio of parameter configurations using
best-of-breed parameter tuning approaches directly for
the comparison purpose. Experimental results show that
our approach lead to improvements over best-of-breed
parameter tuning approaches.

Introduction
Algorithm Selection (Rice 1976) deals with the problem of
choosing the best algorithm among a set of algorithms for a
given problem instance. The key idea is to determine a mod-
el that provides a mapping between instance features and
performance of a group of algorithms on a set of instances.
The resulting model is used to make performance predic-
tions for new problem instances. In relation to algorithm s-
election, i.e. Algorithm Portfolios (e.g. (Gomes and Selman
2001)) primarily focus on determining a set of algorithm-
s for an algorithm selection process. The goal is to choose
these algorithms in a way that their strengths complemen-
t each other or provide algorithmic diversity that hedge a-
gainst heterogeneity in problem instances in pretty much the
same spirit as investment portfolios to reduce risks in eco-
nomics and finance (Huberman, Lukose, and Hogg 1997).
Meta-learning (Smith-Miles 2008) has also been proposed
as a unified framework for considering the algorithm selec-
tion problem as a machine learning problem.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The idea of algorithm selection has also been investigated
in the context of parameter tuning or configuration (Hutter
et al. 2009). The goal is to determine a configuration for
a target algorithm that will (hopefully) work well for giv-
en instances. Hyper-parameter tuning (Bergstra and Bengio
2012) has the same tuning objective but only for machine
learning algorithms. In addition, the evolutionary algorithm
and meta-heuristic community also study how to set the pa-
rameters of an algorithm. They categorise the methods for
calibrating parameters as parameter tuning and parameter
control (Eiben et al. 2007). Parameter tuning refers to the
process taking place offline, while parameter control is con-
cerned with the strategies for adapting the parameter values
in an online manner via some rules or learning algorithms.

SATZilla (Xu et al. 2008) is a successful example of ap-
plying algorithm portfolios to solve the SAT problem, which
has consistently ranked top in the various SAT competition-
s. Its success lies in its ability to derive an accurate run-
time prediction model makes effective use of the problem-
specific features of SAT. Hydra (Xu, Hoos, and Leyton-
Brown 2010) is another portfolio-based algorithm selection
method that combines with automatic configuration to solve
combinatorial problems such as SAT effectively.

In terms of solving optimization problems, several algo-
rithm configurators have been recently proposed. CALIBRA
(Adenso-Diaz and Laguna 2006) combines Taguchi frac-
tional experimental design and local search. ParamILS (Hut-
ter et al. 2009), as explained above, applies iterated local
search to find a single parameter configuration. Racing al-
gorithms like F-Race (Birattari et al. 2002) look for effec-
tive parameter values by performing a race between differ-
ent configurations. Instance-Specific Algorithm Configura-
tion (ISAC) (Kadioglu et al. 2010) incorporates a G-means
clustering algorithm for clustering instances with respect to
the features with an existing parameter tuning method, i.e.
GGA. GGA is used to configure an algorithm for each in-
stance cluster and works like other case-based reasoning re-
lated algorithm selection approaches. (Lau, Xiao, and Hal-
im 2009) proposed Randomized Convex Search (RCS) with
the underlying assumption that the parameter configurations
(points) lie inside the convex hull of a certain number of the
best points. FocusedILS, derived from ParamILS, has been
used to provide a number of different parameter configura-
tions for a given single algorithm. It has also been applied



for designing multiple parameter configurations for a plan-
ner called Fast Downward, in (Seipp et al. 2012). The results
are used for seven portfolio generation methods to build se-
quential portfolios. (Hutter, Hoos, and Leyton-Brown 2011)
proposed a model-based approach, namely SMAC, that can
be used to handle categorical parameters.

This paper seeks to extend the literature on automatic al-
gorithm configuration. The experiments were conducted for
combinatorial optimization problems. Rather than providing
a single parameter configuration that works well in general
or a pre-set schedule of algorithms, we work in the space
of online algorithm selection and feeds this process with a
portfolio of parameter configurations derived from Design
of Experiments (DOE). Our aim is to develop a generic ap-
proach for designing algorithm portfolio of parameter con-
figurations for use within an online algorithm selection pro-
cess to solve combinatorial optimization problems. Our con-
tributions are listed as follows:

• We apply DOE to build algorithm portfolios consisting of
parameter configurations for a given target algorithm. Un-
like configurators like ParamILS, F-Race or CALIBRA
that provide single value for each parameter, DOE pro-
vides a subregion of values for each parameter (that are
statistically important compared to other regions).

• We propose a random sampling approach to determine a
portfolio of parameter configurations from the subregions.
Even though methods like ISAC (Kadioglu et al. 2010)
and Hydra (Xu, Hoos, and Leyton-Brown 2010) already
deliver portfolios of configurations, these techniques run a
tuner for multiple times, resulting in huge computational
overheads. In our case, DOE and sampling is done once,
which reduces computational overheads tremendously.

• We employ two online algorithm selection methods,
namely simple random and learning automata. Again, the
aforementioned portfolio-based methods that make use
of parameter configurations are usually performed offline
without any solution sharing, while our approach com-
bines the strengths of multiple configurations by select-
ing them online and operating them on the same solu-
tion, which is different from standard algorithm config-
uration scenarios. Although dynamic portfolio method-
s (Kadioglu et al. 2011) perform online selection, they
also ignore solution sharing. The empirical results on t-
wo NP-hard problems, namely the Quadratic Assignment
Problem (QAP) and Travelling Salesman Problem (TSP),
show the advantage of using multiple configurations and
solution sharing in algorithm selection.

Algorithm Configuration Problem
The algorithm configuration problem (ACP) (Hutter, Hoos,
and Stutzle 2007) is about determining a configuration for
a given algorithm to perform well on a set of problem in-
stances. An algorithm TA has k parameters to set, P =
{pr1, . . . , prk}. Each of these parameters can be set from
a particular range of values, pri ∈ Di. The configuration
space involves C = D1 × . . . × Dk many possible config-
urations. The objective is to determine which configuration

among such a usually large set can provide the best perfor-
mance on an instance set, I . In this respect, the ACP can
be considered an optimisation problem where a solution is a
configuration ci of the algorithm TA on I . One issue with
this idea is related to solution evaluation. For assessing the
quality of a ci, TA with ci should run on I . Although the
required computational time for this task varies w.r.t. TA,
I and the problem domain of I , it is computationally ex-
pensive in general. Heuristic-based search and optimisation
techniques such as GGA (Ansótegui, Sellmann, and Tier-
ney 2009) and ParamILS (Hutter et al. 2009) have been em-
ployed in order to overcome this issue.

Such tuning methods are eligible to deliver an effective
configuration for a given algorithm. The idea of algorithm
portfolios (Gomes and Selman 2001) have been used to take
advantage of such techniques for building strong algorithm
sets including algorithms with different configurations. Ex-
isting tuning based portfolio approaches like ISAC (Kadio-
glu et al. 2010) and Hydra (Xu, Hoos, and Leyton-Brown
2010) were designed to address the offline algorithm se-
lection problem. They pursue to the goal of specifying the
best single algorithm configuration for solving a particular
problem instance. These systems require a set of features
representing instances to select algorithms after delivering
a set of configurations derived from a computationally ex-
pensive training phase. For instance, Hydra mentions that it
took 70 CPU days to construct a portfolio of configurations.
A similar tool used for a SAT solver, i.e. SATenstein (Khud-
aBukhsh et al. 2009), spent 240 CPU days.

Unlike these cases, the aim of this study is to build a port-
folio of configurations that can be used in an online setting.
The online nature of our approach can allow changing con-
figurations while a selected configuration is fixed for the of-
fline ones. Our system performs like a parameter tuning tool
where any domain specific features are not needed. Besides
that, the tuning process is faster since the tuning operation is
performed once while the tuners used in the aforementioned
portfolio approaches run for multiple times. Although our
approach is not directly comparable with these offline port-
folio methods due to its distinct design, a state-of-the art pa-
rameter tuning approach, i.e. ParamILS which is also used
in Hydra, is experimented for comparison.

Background: Design of Experiments (DOE)
DOE has been widely used in scientific/engineering
decision-making to select and determine the key parame-
ters of a particular process (Montgomery 2005). One typi-
cal application of DOE includes selection of design param-
eters. A DOE-based framework was proposed in (Gunawan,
Lau, and Lindawati 2011) to find ranges of parameters val-
ues which serve as input for configurators such as ParamIL-
S (Hutter et al. 2009). In this paper, we utilize the first two
phases of the framework, namely screening and exploitation,
in order to provide promising sub-regions of configurations.

Suppose we have k parameters of the target algorithm TA
to be tuned, where each parameter pri (discrete or continu-
ous) lies within a numeric interval. In the screening phase, a
complete 2k factorial design is applied to identify m param-
eters (m ≤ k) which have significant effects to the perfor-



mance of the target algorithm (the ”important” parameters).
This requires n × 2k observations where n represents the
number of replicates. Experiments are replicated to help i-
dentifying the sources of variability and to better estimate
the true effects of treatments. The importance of a parame-
ter pri can be defined by conducting the test of significance
on the main effect of the parameter with a significance level,
e.g. α = 10%. Furthermore, the ranking of the critical pa-
rameters is determined by the absolute values of the main
effects of those parameters. Then, a reduced value range for
each important parameter is returned while the remaining
parameters are considered to be set to a constant value.

In the exploration phase, we treat the m important param-
eters determined from the screening phase, with the aim to
find a promising range for them. The target algorithm is run
with respect to the parameter configuration space θ which
contains (2m+1) possible parameter configurations with an
additional setting defined by the centre points of all impor-
tant parameters. By building a linear model of the response
surface and applying the steepest descent, we obtain the
promising range for each important parameter. In our paper,
the run time of DOE depends on the number of configura-
tions multiplied by the number of iterations required for TA
(Gunawan, Lau, and Lindawati 2011).

The complete factorial design is expected to be computa-
tionally expensive if the target algorithm has a large number
of parameters like CPLEX. Parameter search space reduc-
tion becomes essential for such cases (Montgomery 2005).

Solution Approach
Algorithm portfolios are often used with offline algorithm
selection strategies. Our approach is basically in two parts
- portfolio generation and online selection. We observe first
that even though we work with a single target algorithm, the
portfolio of parameter configurations give rise to different
versions of the same algorithm, which enable us to generate
a portfolio of low-level heuristics for algorithm selection.
Our proposed approach is outlined in Algorithm 1.

Algorithm 1: Online Algorithm Portfolio Selection
TA: target algorithm with k parameters, θ:
configuration space defined by the initial ranges of each
parameter pri (∀i = 1, 2, . . . , k), I: instances, z:
portfolio size
Portfolio Design

1 Run DOE to obtain a promising range [li, ui] for each
parameter pri

2 Generate a portfolio of z parameter configurations from
the promising ranges
Online Algorithm Selection

3 Apply a selection method (SR or LA)

Portfolio Design
Recall that DOE provides a promising range for each pa-
rameter pri based on steepest descent of a linear response
surface. More precisely, we have the promising interval [li,

ui] for each parameter pri. Given these intervals, we pro-
pose two different methods to generate a portfolio of param-
eter configurations. The first is to simply use a constant step
size, namely, [li, li+ δ, li+2δ, . . . , ui] where δ is a constant
step size, which is arbitrarily set.

The second method is to perform intensification on the
promising configuration space via random sampling. First,
we generate n random samples of parameter configurations
from the promising space. A contour plot is then generat-
ed where all sampled points (parameter configurations) hav-
ing the same response are connected to produce the contour
lines of the surface. This contour plot provides an approxi-
mate fitness landscape from which we can sample z points
randomly, with a probability that decreases from one con-
tour line to the next. More precisely, if the contour plot is
divided into y contour lines, then we draw zi samples from
the region bounded by contour lines i and i + 1, where
z = z1 + z2 + . . .+ zy and zi > zi+1 for all 1 ≤ i ≤ y− 1.

Online Algorithm Selection
Even though the No Free Lunch theorem (Wolpert and
Macready 1997) states that all algorithms perform similar
on all possible problem instances that are closed under per-
mutation, the search spaces of target problem instances usu-
ally do not have the property of ’closure under permutation’.
Thus, performing (online) algorithm selection has potential
to deliver better performance than each algorithm’s separate
execution. In (He, He, and Dong 2012), this idea is support-
ed by a theoretical study indicating the advantage of using
multiple mutation operators in evolutionary algorithms. A
similar approach is followed to prove the benefit of accom-
modating multiple algorithms for hyper-heuristics in (Lehre
and Özcan 2013). As a consequence, both experimental and
theoretical studies suggest that online algorithm selection is
effective.

We utilize two approaches to perform online algorithm s-
election, while it is possible to find others in hyper-heuristic
(Burke et al. 2013), adaptive operator selection (Da Costa
et al. 2008) and low-knowledge algorithm control (Carchrae
and Beck 2005) studies. First, Simple Random (SR) (Cowl-
ing, Kendall, and Soubeiga 2001) randomly chooses a pa-
rameter configuration at each iteration. Although this is very
naive approach, it can effectively manage a small-sized algo-
rithm set. Second, Learning Automata (LA), a.k.a. stateless
reinforcement learning, has been used to perform heuristic
selection in (Mısır et al. 2010) due to its convergence prop-
erty to a Nash equilibrium. Formally, a LA is described by
a quadruple {A, β, p, U}. A = {a1, . . . , an} is the set of
actions available. p maintains the probabilities of choosing
each of these actions. β(t) is a random variable between 0
and 1 for the environmental response.U is a learning scheme
used to update p (Thathachar and Sastry 2004).

A learning automaton operates iteratively by evaluating
the feedback provided as the result of a selected action. Each
action refers to an algorithm/configuration in our setting.
The feedback from the environment is stated as the environ-
mental response (β(t)) referring whether a selected action is
favorable (β(t) = 1) or unfavorable (β(t) = 0). This feed-
back is then used to update the corresponding action proba-



bilities via general LA equations, i.e. Equation 1 and 2. The
λ1 and λ2 values are the learning rates used to update the
selection probabilities. The linear reward-inaction (LR−I)
update scheme is accommodated to change the probabili-
ties. In this scheme, λ2 is set to zero, meaning that no penal-
ty occurs in case of an unfavorable action. Moreover, two
feedback rules are defined, which are finding a new best so-
lution and delivering an improved solution respectively. This
means that two values are chosen for λ1 depending on which
of two feedbacks are received.

pi(t+ 1) = pi(t) +λ1 β(t)(1− pi(t))
−λ2(1− β(t))pi(t) (1)
if ai is the action taken at time step t

pj(t+ 1) = pj(t) −λ1 β(t)pj(t)
+λ2(1− β(t))[(r − 1)−1 − pj(t)](2)
if aj 6= ai

where r is the number of actions in A.

Experimental Results
We perform experiments on two classical combinatorial op-
timization problems - the Quadratic Assignment Problem
(QAP) and Traveling Salesman Problem (TSP). For each
experiment, we perform four different selection methods:
1) simple random with constant step size (SR-Constant), 2)
simple random with random sampling from the contour plot
(SR-Contour), 3) learning automata with constant step-size
(LA-Constant), and 4) learning automata with random sam-
pling from the contour plot (LA-Contour). The learning rate
(λ1) of LA is set to 0.1 and 0.01 respectively for finding a
new best solution or improving the current solution.

Quadratic Assignment Problem
QAP is the problem of finding a minimum cost allocation
of facilities to locations, taking the costs as the sum of al-
l distance-flow products. The target algorithm to solve QAP
is the hybridization of Simulated Annealing and Tabu Search
(SA-TS) (Ng, Gunawan, and Poh 2008) with four parame-
ters to be tuned. The parameter configurations (Gunawan,
Lau, and Lindawati 2011) used are detailed in Table 1.

Benchmark instances are taken from QAPLIB (Burkard,
Karisch, and Rendl 1997). The instances are considered in
four classes as in (Taillard 1995): unstructured (Group I),
grid-based distance matrix (Group II), real-life instances
(Group III) and real-life-like instances (Group IV). Due to
the limitation of the target algorithm that can only handle
symmetrical distance matrix, we focus on instances from
the first three classes. By referring to (Gunawan, Lau, and
Lindawati 2011) for classifying instances into training and
testing instances, we conduct the experiments for two differ-
ent set of instances: 1) testing instances and 2) all instances.
Instance classes consist of 11, 24, 14 training and 5, 11, 7
testing instances, respectively.

The application of DOE screening phase yields the fol-
lowing result, e.g. for Group I. It reveals that two parameters

(Temp andAlpha) are statistically significant (with p-value
≤ 5%), while the effect of other parameters: TabuLngth
and Limit are insignificant. Based on the coefficient value
obtained, we determine the constant value for each insignif-
icant parameter, e.g. the effect of parameter Limit is 0.137,
so the value of this parameter is set to its lower bound val-
ue, which is 0.01 (Table 1). Using this information in the
DOE exploration phase, we find the promising planar region
for both parameters (Temp and Alpha). The final ranges
for both parameters are summarized in Table 1. The last two
columns show details on step sizes and number of random
samples used to generate the portfolio.

The contour plots generated from 100 random samples,
which is based on the DOE range, are shown in Figure 1.
From the plots, we pick three and two different parameter
configurations randomly from two promising regions, I and
II, respectively.

In order to compare the performance of our proposed ap-
proach, we also run the target algorithm with constant pa-
rameter values generated by RCS and ParamILS. Both con-
figurators also use the same inputs from DOE range (Ta-
ble 1). The parameter values are obtained from (Gunawan,
Lau, and Lindawati 2011). Take note that in order to ensure
the fairness between RCS and ParamILS, we use the same
number of iterations, e.g. 100 iterations. Based on our ex-
periments, RCS takes longer computation time compared
against ParamILS. The performance metric optimized by
both configurators is the objective function value.

For each instance, we perform 10 runs and compare the
percentage deviations of the average objective function val-
ues of the solutions obtained and the best objective function
values against the best known/optimal solutions. The results
are summarized in Table 2.

We also run ParamILS five times in order to generate five
parameter configurations. Both selections methods, simple
random and learning automata, are used to compare against
points generated from the contour plot (SR-Contour and LA-
Contour). The results are indicated as SR-ParamILS and
LA-ParamILS. The purpose of this comparison is to show
how generating a portfolio of algorithms with different pa-
rameter values generated from the contour plot outperforms
a portfolio of algorithms using constant step-size and best-
of-breed parameter tuning approaches (e.g. ParamILS).

All the selection methods listed in Table 2 have differen-
t computational expenses. The constant step-size based ap-
proaches do not have extra cost while the contour plot strate-
gies have an additional sampling step requiring additional
computational resources. The superior performance of the
contour plot based methods show that sampling works. The
online selection scenarios using ParamILS to generate port-
folios, require more time for s > 1 in comparison to the con-
tour plot based idea. The reason behind this computational
performance difference is that ParamILS should be called s
times unlike the contour plot idea which requires only one
run of sampling. Thus, the contour plot based idea has clear
computational advantage over ISAC, Hydra like configura-
tor based portfolio approaches.

Wilcoxon Signed Rank Test is further conducted to test
all pairwise differences between each algorithm selection



Table 1: The parameter space of the QAP
Parameters Initial range DOE range Constant Step size Contour Plot

Init. temperature (Temp) [100, 7000]
Group I [4378, 6378] 250

5 selected configurations

Group II [4238, 6238] 250
Group III [4000, 6000] 250

Cooling factor (Alpha) [0.5, 0.95]
Group I [0.935, 0.945] 0.005

Group II [0.935, 0.945] 0.005
Group III [0.85, 0.95] 0.05

Tabu list length (TabuLngth) [5, 10]
Group I 5 - -

Group II 6 - -
Group III 6 - -

Diversification factor (Limit) [0.01, 0.1]
Group I 0.01 - -

Group II 0.1 - -
Group III 0.1 - -

Figure 1: Contour Plot (Groups I, II and III, respectively)

approach. We summarize the ranks of each approach be-
low. LA-Contour ≈ SR-Contour � LA-Constant � LA-
ParamILS ≈ SR-Constant � SR-ParamILS � RCS ≈
ParamILS (Group I), LA-Constant � LA-ParamILS � SR-
Contour ≈ LA-Contour � SR-Constant � SR-ParamILS
� RCS ≈ ParamILS (Group II) and SR-Contour � LA-
ParamILS � SR-Constant ≈ LA-Constant � LA-Contour
� SR-ParamILS � ParamILS ≈ RCS (Group III).

In general, we obtain better results by generating a port-
folio of algorithms with different parameter configurations,
either by applying Simple Random or Learning Automa-
ta, compared against constant parameter values (RCS or
ParamILS). In both Groups I and III, Learning Automa-
ta with random sampling (LA-Contour) outperforms others.
On the other hand, Learning Automata with a constant step-
size (LA-Constant) performs the best. Using the contour plot
to generate a portfolio of promising parameter values also
outperforms other approaches.

We additionally compare our approach against five sin-
gle parameter configurations, from the generated portfolio.
The portfolio usually provides better percentage deviations
from the best known solutions, especially for the Group I-
I instances. The percentage deviations for testing obtained
by both SR-Contour and LA-Contour are only 0.149% and
0.151% respectively. The five single parameter configura-
tions’ distance to the best known solutions, however, range
from 0.209% to 0.451% when each runs in isolation.

Lastly, we provide a glimpse of the effectiveness of the
generated portfolio by examining the frequency distribution
of selection, as shown in Figure 2. The cumulative frequen-
cy of choosing each parameter configuration vary over itera-
tions, suggesting that different configurations are effectively
used throughout the online selection process. And consider-
ing that LA outperformed both ParamILS and SR, we can
conclude that the LA’s learning process pays off.

Figure 2: The effect of learning automata on parameter con-
figuration selection while solving a QAP instance, tho150



Table 2: The performance of the tested approaches on the QAP instances with respect to the best known solutions (Param is
ParamILS, Const is Constant, Cont is Contour)

Instances Metric Methods
RCS Param SR-Param LA-Param SR-Const LA-Const SR-Cont LA-Cont

Group I

% Dev Avg (Test) 0.606 0.692 0.779 0.509 0.535 0.492 0.473 0.471
% Dev Best (Test) 0.314 0.345 0.416 0.350 0.378 0.340 0.301 0.325
% Dev Avg (All) 0.880 0.973 1.011 0.756 0.737 0.734 0.716 0.700
% Dev Best (All) 0.505 0.581 0.618 0.470 0.449 0.444 0.444 0.476

Group II

% Dev Avg (Test) 0.214 0.210 0.394 0.139 0.168 0.134 0.149 0.151
% Dev Best (Test) 0.030 0.024 0.061 0.025 0.022 0.018 0.012 0.032
% Dev Avg (All) 0.262 0.247 0.417 0.183 0.192 0.189 0.189 0.183
% Dev Best (All) 0.068 0.060 0.103 0.038 0.045 0.031 0.030 0.031

Group III

% Dev Avg (Test) 1.231 1.196 1.990 0.667 0.744 0.767 0.636 0.935
% Dev Best (Test) 0.000 0.191 0.000 0.000 0.000 0.000 0.000 0.000
% Dev Avg (All) 2.921 2.848 3.414 1.620 2.563 1.824 2.516 1.700
% Dev Best (All) 1.114 0.873 0.278 0.252 1.170 0.241 0.266 0.231

Table 3: The parameter space of the TSP
Parameters Initial range DOE Range Constant Step size Contour Plot

Maximum # iterations (Itermax) [100, 900] [400, 600] 50

5 selected configurationsPerturbation strength (Ps) [1, 10] [1, 3] 1
Non-improving moves tolerance (T lnip) [1, 10] [4, 6] 1

Perturbation choice (Pc) [3, 4] 3 -

Table 4: The performance of the tested approaches on the TSP instances with respect to the best known solutions (Param is
ParamILS, Const is Constant, Cont is Contour)

Metric Methods
Param SR-Param LA-Param SR-Const SR-Cont LA-Const LA-Cont

% Dev Avg (Test) 1.742 1.331 1.321 1.325 1.377 1.295 1.291
% Dev Best (Test) 0.852 0.752 0.787 0.792 0.768 0.704 0.664
% Dev Avg (All) 1.671 1.259 1.211 1.262 1.304 1.272 1.207
% Dev Best (All) 0.838 0.736 0.702 0.815 0.770 0.717 0.684

Travelling Salesman Problem
Travelling Salesman problem (TSP) is the problem of find-
ing a tour that visits all cities exactly once that minimises
the total distance travelled. In our experiment, Iterated Lo-
cal Search (ILS) with a 4-Opt perturbation is used as the
target algorithm (Halim, Yap, and Lau 2007).

Table 3 summarizes the list of the parameters to be tuned
with their initial and final, after DOE, ranges. Similar to
QAP, the last two columns provide how we generate the
portfolio of configurations. 47 TSP instances out of 70 from
TSPLIB are used for training while the rest (23 instances)
are treated as testing instances. Five parameter configura-
tions are also produced using ParamILS to compare them
against the five points generated from the contour plot, indi-
cated as SR-Param and LA-Param.

From Table 4, the algorithm selection methods are ranked
as follows: LA-Contour≈ LA-Constant� LA-Param≈ SR-
Constant ≈ SR-Param ≈ SR-Contour � ParamILS. We ob-
serve that our approach works well compared to existing
configurators. In particular, the selection method using LA-
Contour outperforms others. Besides that, our approach us-
ing the contour plot is superior than the portfolio of config-
urations generated by ParamILS.

Conclusion

This paper shows that DOE coupled with random sampling
can automatically generate effective portfolios of parame-
ter configurations that can be used by online selection. The
computational results on two classical combinatorial optimi-
sation problems showed the strength of our proposed method
compared to state-of-the-art configurators such as ParamIL-
S. We show that our proposed approach leads to improve-
ments to two combinatorial optimization problems, QAP
and TSP, when compared against single configurations.

In order to make further improvements, a new sampling
strategy will be developed, particularly to speed-up the post-
DOE stage. The current DOE approach will be modified
such that larger parameter sets including conditional param-
eters can be handled. For taking advantage of the existing
algorithm portfolio selection technologies, problem instance
features will be used to derive better portfolios and support
online algorithm selection. The test domains will be extend-
ed to satisfaction for comparing our system to the state-of-
the-art configuration based portfolio techniques.



Acknowledgements
This research is supported by Singapore National Research
Foundation under its International Research Centre @ Sin-
gapore Funding Initiative and administered by the IDM Pro-
gramme Office, Media Development Authority (MDA).

References
Adenso-Diaz, B., and Laguna, M. 2006. Fine-tuning of
algorithms using fractional experimental designs and local
search. OR 54(1):99–114.
Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A
gender-based genetic algorithm for the automatic configu-
ration of algorithms. CP’09 142–157.
Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. JMLR 13:281–305.
Birattari, M.; Stützle, T.; Paquete, L.; and Varrentrapp, K.
2002. A racing algorithm for configuring metaheuristics. In
GECCO’02, 11–18.
Burkard, R.; Karisch, S.; and Rendl, F. 1997. QAPLIB–
a quadratic assignment problem library. Journal of Global
Optimization 10(4):391–403.
Burke, E. K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa,
G.; Ozcan, E.; and Qu, R. 2013. Hyper-heuristics: A survey
of the state of the art. JORS 64:1695–1724.
Carchrae, T., and Beck, J. 2005. Applying machine learning
to low-knowledge control of optimization algorithms. Com-
putational Intelligence 21(4):372–387.
Cowling, P.; Kendall, G.; and Soubeiga, E. 2001. A hyper-
heuristic approach to scheduling a sales summit. In PATAT
’00: Selected papers, 176–190. Springer.
Da Costa, L.; Fialho, A.; Schoenauer, M.; and Sebag, M.
2008. Adaptive operator selection with dynamic multi-
armed bandits. In GECCO’08, 913–920.
Eiben, A.; Michalewicz, Z.; Schoenauer, M.; and Smith, J.
2007. Parameter Control in Evolutionary Algorithms. Pa-
rameter Setting in Evolutionary Algorithms 19–46.
Gomes, C., and Selman, B. 2001. Algorithm portfolios. AI
126(1):43–62.
Gunawan, A.; Lau, H. C.; and Lindawati. 2011. Fine-tuning
algorithm parameters using the design of experiments ap-
proach. In Coello Coello, C., ed., LION’11, LNCS, 278–
292. Springer.
Halim, S.; Yap, R.; and Lau, H. 2007. An integrated
white+black box approach for designing and tuning stochas-
tic local search. In CP’07, volume 4741 of LNCS. Springer.
332–347.
He, J.; He, F.; and Dong, H. 2012. Pure strategy or mixed
strategy? - an initial comparison of their asymptotic conver-
gence rate and asymptotic hitting time. In Hao, J.-K., and
Middendorf, M., eds., EvoCOP’12, volume 7245 of LNCS,
218–229.
Huberman, B.; Lukose, R.; and Hogg, T. 1997. An eco-
nomics approach to hard computational problems. Science
275(5296):51.

Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configuration
framework. JAIR 36(1):267–306.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm
configuration. In LION’11, volume 6683 of LNCS. 507–
523.
Hutter, F.; Hoos, H. H.; and Stutzle, T. 2007. Automatic
algorithm configuration based on local search. In AAAI’07,
volume 22, 1152.
Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K.
2010. ISAC–instance-specific algorithm configuration. In
ECAI’10, 751–756.
Kadioglu, S.; Malitsky, Y.; Sabharwal, A.; Samulowitz, H.;
and Sellmann, M. 2011. Algorithm selection and schedul-
ing. In CP’11, volume 6876 of LNSC, 454–469. Springer.
KhudaBukhsh, A. R.; Xu, L.; Hoos, H. H.; and Leyton-
Brown, K. 2009. SATenstein: Automatically building local
search sat solvers from components. In IJCAI’09, 517–524.
Lau, H. C.; Xiao, F.; and Halim, S. 2009. A framework for
automated parameter tuning in heuristic design. In MIC’09.
Lehre, P. K., and Özcan, E. 2013. A runtime analysis of
simple hyper-heuristics: To mix or not to mix operators. In
FOGA’13.
Mısır, M.; Wauters, T.; Verbeeck, K.; and Vanden Berghe, G.
2010. A new learning hyper-heuristic for the traveling tour-
nament problem. In Caserta, M., and Voss, S., eds., Meta-
heuristics: Intelligent Problem Solving - MIC’09. Springer.
Montgomery, D. 2005. Design and Analysis of Expeirments.
John Wiley and Sons Inc, 6th Edition.
Ng, K. M.; Gunawan, A.; and Poh, K. L. 2008. A hybrid
algorithm for the quadratic assignment problem. In CSC’08.
Rice, J. 1976. The algorithm selection problem. Advances
in computers 15:65–118.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning portfolios of automatically tuned planners. In I-
CAPS’12.
Smith-Miles, K. 2008. Cross-disciplinary perspectives on
meta-learning for algorithm selection. ACM Computing Sur-
veys 41(1):1–25.
Taillard, E. 1995. Comparison of iterative searches for the
quadratic assignment problem. Location Science 3(2):87–
105.
Thathachar, M., and Sastry, P. 2004. Networks of Learning
Automata: Techniques for Online Stochastic Optimization.
Kluwer Academic Publishers.
Wolpert, D., and Macready, W. 1997. No free lunch theo-
rems for optimization. IEEE Transactions on Evolutionary
Computation 1:67–82.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. JAIR
32(1):565–606.
Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2010. Hydra:
Automatically configuring algorithms for portfolio-based s-
election. In AAAI’10, 210–216.


