
Chapter 21

A Hyper-heuristic with Learning Automata
for the Traveling Tournament Problem

Mustafa Misir, Tony Wauters, Katja Verbeeck, and Greet Vanden Berghe

Abstract In this paper we propose a new learning hyper-heuristic that is composed
of a simple selection mechanism based on a learning automaton and a new accep-
tance mechanism, i.e., the Iteration Limited Threshold Accepting criterion. This
hyper-heuristic is applied to the challenging Traveling Tournament Problem. We
show that the new hyper-heuristic method, even with a small number of low-level
heuristics, consistently outperforms another hyper-heuristic without any learning
device. Moreover, the learning hyper-heuristic method, although very general, gen-
erates high-quality solutions for the tested Traveling Tournament Problem bench-
marks.

21.1 Introduction

Boosting search with learning mechanisms is currently a major challenge within the
field of meta-heuristic research. Learning is especially interesting in combination
with hyper-heuristics that try to lift the search on a more general, problem indepen-
dent level [6]. When using a hyper-heuristic, the actual search takes place in the
space of domain applicable low-level heuristics (LLHs), rather than in the space of
possible problem solutions. In this way the search process does not focus on domain
specific data, but on general qualities such as gain of the objective value and exe-
cution time of the search process. A traditional perturbative choice hyper-heuristic
consists of two sub-mechanisms: A heuristic selection mechanism to choose the
best LLH for generating a new (partial or complete) solution in the current opti-
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mization step and a move acceptance mechanism to decide on the acceptance of the
new solution.
In this paper we propose a new learning based selection mechanism as well as a

new acceptance mechanism. For the selection mechanism, we were inspired by sim-
ple learning devices, called learning automata [26]. Learning Automata (LA) have
originally been introduced for studying human and/or animal behavior. The objec-
tive of an automaton is to learn taking optimal actions based on past experience. The
internal state of the learning device is described as a probability distribution accord-
ing to which actions should be chosen. These probabilities are adjusted with some
reinforcement scheme corresponding to the success or failure of the actions taken.
An important update scheme is the linear reward-penalty scheme. The philosophy is
essentially to increase the probability of an action when it results in a success and to
decrease it when the response is a failure. The field is well-founded in the sense that
the theory shows interesting convergence results. In the approach that we present in
this paper, the action space of the LA will be the set of LLHs and the goal for the
learning device is to learn selecting the appropriate LLH(s) for the problem instance
at hand.
Next, we also introduce a new move acceptance mechanism called Iteration Lim-

ited Threshold Accepting (ILTA). The idea is to only accept a worsening solution
under certain conditions, namely 1) after a predefined number of worsening moves
has been considered and 2) if the quality of the worsening solution is within a range
of the current best solution.
Our new hyper-heuristic is tested on the challenging Traveling Tournament Prob-

lem (TTP). We show that the method consistently outperforms the Simple Random
(SR) hyper-heuristic even with a small number of LLHs. In addition, the simple yet
general method easily generates high quality solutions for known TTP benchmarks.
In the remainder of this paper we briefly describe the TTP in Section 21.2. Then,

we give detailed information about hyper-heuristics, with motivational explanation
in Section 21.3. Next, we introduce the LA based selection mechanism and the
new acceptance criterion in Sections 21.4 – 21.6, while our experimental results are
shown and discussed in Section 21.7. We conclude in Section 21.8.

21.2 The Traveling Tournament Problem

The TTP is a very hard sport timetabling problem that requires generating a feasible
home/away schedule for a double round robin tournament [18]. The optimization
part of this problem involves finding the shortest traveling distance aggregated for
all the teams. In small or middle-size countries, such as European countries, teams
return to their home city after away games. However in large countries, cities are
too far away from each other, so that returning home between games is often not an
option.
Generally, solutions for the TTP should satisfy two different constraints: (c1) a

team may not play more than three consecutive games at home or away and (c2)
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for all the teams ti and t j, game ti–t j cannot be followed by game t j–ti. In order to
handle them and optimize the solutions to the TTP, we used five LLHs within the
heuristic set. Brief definitions of the LLHs are:

SwapHomes: Swap home/away games between teams ti and t j
SwapTeams: Swap the schedules of teams ti and t j
SwapRounds: Swap two rounds by exchanging the games assigned to ri with
those assigned to r j
SwapMatch: Swap games of ti and t j for a given round r
SwapMatchRound: Swap games of a team t in rounds ri and r j

The TTP instances1 that we used in this study were derived from the US National
League Baseball and the Super 14 Rugby League. The first group of instances (NL)
consists of

�8
n=2 2n teams and the second set of instances (Super) involves a number

of teams that ranges from 4 to 14 (
�7
n=2 2n).

Table 21.1: The distance matrix of instance NL8 as an example

t1 t3 t3 t4 t5 t6 t7 t8

t1 0 745 665 929 605 521 370 587
t2 745 0 80 337 1090 315 567 712
t3 665 80 0 380 1020 257 501 664
t4 929 337 380 0 1380 408 622 646
t5 605 1090 1020 1380 0 1010 957 1190
t6 521 315 257 408 1010 0 253 410
t7 370 567 501 622 957 253 0 250
t8 587 712 664 646 1190 410 250 0

In Table 21.1, an example of an 8-team TTP instance with the traveling distances
between teams (ti) is given. In the benchmarks that we worked on, the distance data
are symmetric. This means that the distance between two teams is not depending
on the travel direction. The problem data does not include anything but distance
information. An example solution is given in Table 21.2. In this table, the games
between 8 teams during 14 rounds (# of rounds = 2× (n−1) for n teams) are given.
For instance, the entry for t2 in Round 7 shows that t2 will play an away game at t5’s
location (away games are characterized by a minus (−) sign).
The objective function that we used to measure the quality of the TTP solutions

is determined by f = d× (1+
�2

i=1wici). f should be minimized whilst respecting
the constraints. In this equation, d is the total traveling distance, ci is constraint i, wi
is the corresponding weight. In this study, we opted for setting all the weights to 10.

1 An up-to-date TTP website which includes the TTP benchmarks and their best solutions with
lower bound values is http://mat.gsia.cmu.edu/TOURN/ .



328 Mustafa Misir, Tony Wauters, Katja Verbeeck, and Greet Vanden Berghe

Table 21.2: An optimal solution for NL8

t1 t2 t3 t4 t5 t6 t7 t8

Round 1 5 -6 -4 3 -1 2 -8 7
Round 2 4 -7 -8 -1 6 -5 2 3
Round 3 6 -8 -7 -5 4 -1 3 2
Round 4 -7 4 5 -2 -3 8 1 -6
Round 5 -6 5 7 8 -2 1 -3 -4
Round 6 -8 7 -6 5 -4 3 -2 1
Round 7 3 -5 -1 7 2 -8 -4 6
Round 8 2 -1 -5 -8 3 -7 6 4
Round 9 -3 8 1 -7 -6 5 4 -2
Round 10 -2 1 8 -6 -7 4 5 -3
Round 11 -4 3 -2 1 -8 7 -6 5
Round 12 8 -4 6 2 7 -3 -5 -1
Round 13 7 6 4 -3 8 -2 -1 -5
Round 14 -5 -3 2 6 1 -4 8 -7

21.3 Hyper-heuristics

In [7], a hyper-heuristic is defined as “a search method or learning mechanism for
selecting or generating heuristics to solve hard computational search problems.” In
the literature, there are plenty of studies that try to generate more intelligent hyper-
heuristics by utilizing different learning mechanisms. These hyper-heuristics are di-
vided into two classes, namely online and offline hyper-heuristics [7]. Online learn-
ing hyper-heuristics learn while solving an instance of a problem. In [15], a choice
function that measures the performance of all the LLHs based on their individual and
pairwise behavior was presented. In [27], a simple reinforcement learning scoring
approach was used for the selection process and in [9] a similar scoring mechanism
was combined with tabu search to increase the effectiveness of the heuristic selec-
tion. Also, some population based techniques such as genetic algorithms (GA) [14]
and ant colony optimization (ACO) [8, 13] were used within hyper-heuristics. These
studies relate to online learning. On the other hand, offline learning is training based
learning or learning based on gathering knowledge before starting to solve a prob-
lem instance. It was utilized within hyper-heuristics by using case-based reasoning
(CBR) [11], learning classifier systems (LCS) [31] and messy-GA [30] approaches.
The literature provides more examples regarding learning within hyper-heuristics.
A perturbative choice hyper-heuristic consists of two sub-mechanisms as it is

shown in Figure 21.1. The heuristic selection part has the duty to determine a re-
lationship between the problem state and the LLHs. Thus, it simply tries to find or
recognize which LLH is better to use in which phase of an optimization process
related to a problem instance. The behavior of the selection process is influenced by
the fitness landscape.
The idea of a fitness landscape was first proposed by Wright [35]. It can be de-

fined as a characterization of the solution space by specific neighboring relations.
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Fig. 21.1: A perturbative hyper-heuristic framework (after Ozcan and Burke [28])

For a fitness landscape, mainly a representation space, a fitness function and a neigh-
borhood are required [21]. A representation space refers to all the available solutions
that are reachable during a search process. A fitness (evaluation) function is used to
quantify the solutions that are available in the representation space. A neighborhood
combines all the possible solutions that can be generated by perturbing a particu-
lar solution according to its neighboring relations. Hence, any modification to these
three main parts alters the fitness landscape. Some search strategies involve only one
neighborhood and thus do not change the landscape. That is, they perform search
on a single fitness landscape. On the other hand, each LLH under a hyper-heuristic
generates a fitness landscape itself. Each simple LLH refers to a neighborhood and,
therefore, the heuristic selection process is basically changing fitness landscapes by
selecting different LLHs during the search process.
In addition, move acceptance mechanisms are required to construct perturbative

hyper-heuristics. They have a vital influence on the performance of hyper-heuristics
since they determine the path to follow in a fitness landscape corresponding to a
selected LLH. They generally involve two main characteristics, intensification for
exploitation and diversification for exploration. Simulated annealing (SA) [23] is a
good example of a move acceptance mechanism that provides both features at the
same time. However, it is also possible to consider move acceptance mechanisms
that do not consist of any diversification feature. An example is the only improving
(OI) [15] move acceptance, which only accepts better quality solutions. Also, it is
possible to find acceptance mechanisms without any intensification and diversifi-
cation, such as all moves (AM) [15] accepting. It should be noticed that these two
features are not only corresponding to the move acceptance part. Heuristic selection
mechanisms can provide them too. Swapping LLHs turns out to act as a diversifica-
tion mechanism since it enables leaving a particular local optimum.

21.4 Simple Random Heuristic Selection Mechanism

Simple Random (SR) is a parameter-free and effective heuristic selection mecha-
nism. It is especially useful over heuristic sets with a small number of heuristics.
Usually heuristic search mechanisms only provide improvement during a very lim-
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ited number of iterations (approaches that spend too much time for a single iteration
are excluded). Hence, if the heuristic set is small, the selection process does not
significantly harm the hyper-heuristic by selecting inappropriate heuristics.
In the literature, some papers report on experiments concerning hyper-heuristics

with SR. In [2], SR with a number of new move acceptance mechanisms was em-
ployed to solve the component placement sequencing problem. Compared to some
online learning hyper-heuristics, experiments showed that the hyper-heuristics with
SR were superior in the experiments. In [22], a hyper-heuristic with SR generated
competitive results over the channel assignment problem. In [3], SR is combined
with SAmove acceptance. The results for the shelf space allocation problem showed
that the proposed strategy performs better than a learning hyper-heuristic from the
literature, and a number of other hyper-heuristics. In [1], SR is employed for the
selection of heuristics. The proposed approach reached the state of the art results for
some TTP instances. In [5], SR appeared to be the second best heuristic selection
mechanism among seven selection mechanisms over a number of exam timetabling
benchmarks. For the same problem, in [10], a reinforcement learning strategy for
heuristic selection was investigated. It was presented that SR can beat the tested
learning approach for some scoring schemes. In [29], SR and four other heuristic
selection mechanisms, including some learning based ones, with a common move
acceptance were employed. The experimental results for the exam timetabling prob-
lem indicated that the hyper-heuristic with SR performed best. On the other hand, in
[15], the best solutions were reached by the learning hyper-heuristics for the sales
summit scheduling problem. However, choice function (CF)-OI hyper-heuristics
performed worse than the SR-OI hyper-heuristic. In [16], the same study was ex-
tended and applied to the project presentation scheduling problem. The experimen-
tal results showed that a CF with AM performed best. In the last two references,
the possible reason for explaining a poorly performing SR is related to weak di-
versification strategies provided by the move acceptance mechanisms. For instance,
expecting a good performance from the traditional SR-AM hyper-heuristic is not
realistic. Since AM does not decide anything about the acceptability of the gener-
ated solution. Thus, the performance of such hyper-heuristics mainly depends on
the selection mechanism. In such cases, a learning based selection mechanism can
easily perform better than SR.
SR can be beaten by utilizing (properly tuned) online learning hyper-heuristics

or (efficiently trained) offline learning hyper-heuristics. Giving the best decision at
each selection step does not seem possible by randomly selecting heuristics. That
is, there is gap between selecting heuristics by SR and the best decisions for each
step. Nevertheless, it is not an easy task to beat a hyper-heuristic involving SR and
an efficient move acceptance mechanism on a small heuristic set by using a learning
hyper-heuristic. Due to its simplicity, SR can be used to provide an effective and
cheap selection mechanism especially over small-sized heuristic sets.
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Fig. 21.2: A learning automaton put into a feedback loop with its environment [34]

21.5 Learning Automata Based Selection Mechanisms

Formally, a learning automaton is described by a quadruple {A,β , p,U}, where
A = {a1, . . . ,an} is the action set the automaton can perform, p is the probability
distribution over these actions, β (t) ∈ [0,1] is a random variable representing the
environmental response, andU is a learning scheme used to update p [34].
A single automaton is connected with its environment in a feedback loop (Fig-

ure 21.2). Actions chosen by the automaton are given as input to the environment
and the environmental response to this action serves as input to the automaton. Sev-
eral automaton update schemes with different properties have been studied. Impor-
tant examples of linear update schemes are linear reward-penalty, linear reward-
inaction and linear reward-ε-penalty. The philosophy of these schemes is essen-
tially that the probability of an action is increased when it results in a success and
decreased when the response is a failure. The general update scheme (U) is given
by:

pi(t+1) = pi(t) +λ1 β (t)(1− pi(t))−λ2(1−β (t))pi(t) (21.1)

if ai is the action taken at time step t

p j(t+1) = p j(t) −λ1 β (t)p j(t)+λ2(1−β (t))[(r−1)−1− p j(t)] (21.2)

if a j �= ai

with r the number of actions of the action set A. The constants λ1 and λ2 are the
reward and penalty parameters, respectively.When λ1= λ2, the algorithm is referred
to as linear reward-penalty (LR−P), when λ2 = 0 it is referred to as linear reward-
inaction (LR−I) and when λ2 is small compared to λ1 it is called linear reward-ε-
penalty (LR−εP).
In this study, actions will be interpreted as LLHs, so according to Equations

(21.1) and (21.2), the selection probabilities will be changed based on how they
perform. The reward signal is chosen as follows: When a move results in a better
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solution than the best solution found so far, we update the probabilities of the cor-
responding LLHs with a reward of 1. When no better solution is found, we use 0
reward. This simple binary reward signal uses only little information. Nevertheless,
we will see that it is powerful for selecting heuristics.

Fig. 21.3: Solution samples from a hyper-heuristic with SR on a TTP instance
(NL12)

Additionally, in order to investigate the effect of forgetting previously learned
information about the performance of LLHs, we used a restart mechanism, which at
some predetermined iteration step, resets the probabilities (pi) of all the heuristics
(hi) to their initial values (1/r). The underlying idea is that in optimization problems,
generating improvements is typically easier at the early stages of the optimization
process. Solutions get harder to be improved in further stages. This is illustrated
in Figure 21.3, which shows the evolution of the quality of the best solution for
a hyper-heuristic with SR, applied to a TTP instance. Even if this fast improve-
ment during early iterations can be useful for determining heuristic performance
in a quick manner, it can be problematic during later iterations. The circumstances
in which better solutions can be found may change during the search. Thus, the
probability vector that evolved during early iterations can be misleading due to the
characteristic changes of the search space. Therefore, it can be useful to restart the
learning process.
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21.6 Iteration Limited Threshold Accepting

ILTA is a move acceptance mechanism that tries to provide efficient cooperation
between intensification and diversification. The pseudo-code of ILTA is given in Al-
gorithm 21.1. It works by comparing the objective function values of the current
and newly generated solutions. First, when a heuristic is selected and applied to
generate a new solution S�, its fitness objective function value f (S�) is compared
to the objective function value of the current solution f (S). If the new solution is a
non-worsening solution, then it is accepted and it replaces the current one. However,
when the new solution is worse than the current solution, ILTA checks whether this
worsening move is good enough to accept. Usually move acceptance mechanisms
that use a diversification method, may accept a worsening solution at any step. ILTA
will act much more selective before accepting a worsening move. In ILTA, a wors-
ening move can only be accepted after a predefined number of consecutive worsen-
ing solutions (k) was generated. For instance, if 100 consecutive worsening moves
(w iterations = 100) were generated, it is plausible to think that the current solu-
tion is not good enough to be improved. It makes sense to accept a worsening move
then. In that case, a worsening move is accepted given that the new solution’s ob-
jective function value f (S�) is within a certain range R of the current best solution’s
objective function value f (Sb). For example, choosing R= 1.05 means that a solu-
tion will be accepted within a range of 5% from the current best objective function
value. Rwas introduced for preventing the search to go to much worse solutions (the
solutions that can be found during earlier iterations).

Algorithm 21.1: ILTA move acceptance

Input: k ≥ 0∧R ∈ (1.00 : ∞)
if f (S�) < f (S) then

S← S�;
w iterations= 0;

else if f (S�) = f (S) then
S← S�;

else
w iterations= w iterations+1;
if w iterations≥ k and f (S�) < f (Sb)×R then

S← S� and w iterations= 0;
end

end

The motivation behind limiting the number of iterations regarding accepting
worsening solutions is related to avoiding a local optimum that a set of fitness land-
scapes have in common. In addition, the search should explore neutral pathways or
plateaus [33] (solutions that have the same fitness values) efficiently in order to dis-
cover possible better solutions. As we mentioned in the hyper-heuristics part, each
LLH generates a fitness landscape itself and each solution available in one landscape
is available in the others (supposed that the representation spaces are the same for
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different LLHs), but the neighboring relations differ. In Figure 21.4, the relations
between solutions in different landscapes are visualized. The solution � in the left
landscape is possibly at a local optimum, but the same solution is no longer located
in a local optimum in the right landscape. In such a situation, changing landscapes
or selecting other LLH, is a useful strategy to escape from the local optimum. Note
that the solution � in the second landscape is now in a local optimum. That is, this
problem may occur in any fitness landscape, but in different phases of the search
process.

Fig. 21.4: Part of imaginary fitness landscapes corresponding to two different LLHs

Obviously, a very simple selection mechanism such as SR, can be sufficient to
overcome such problems. Suppose that the current solution is a common local opti-
mum of both landscapes, e.g., solution ⊗. In such situations, swapping landscapes
will not be helpful. Accepting a worsening solution can be a meaningful strategy for
getting away. Unfortunately, fitness landscapes do not usually look that simple. Each
represented solution has lots of neighbors and checking all of them whenever en-
countering a possible local optimum would be a time consuming process. Instead,
we suggest to provide a reasonable number of iterations for the improvement at-
tempt. If after the given number of iterations, the solution has not improved, then
it is quite reasonable to assume that the solution is at a common local optimum. It
makes then sense to explore the search space further by accepting worsening moves.

21.7 Experiments and Results

All experiments were carried out on Pentium Core 2 Duo 3 GHz PCs with
3.23 GB memory using the JPPF grid computing platform.2 Each hyper-heuristic
was tested ten times for each TTP instance. We experimented with different
values of λ1, namely {0.001,0.002,0.003,0.005,0.0075,0.01} for the LA based

2 Java Parallel Processing Framework: http://www.jppf.org/
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selection mechanism of the hyper-heuristic. The LA were restarted once after
107 iterations. The minimum number of consecutive worsening solutions k in
ILTA was set to 100 and the value of R in the ILTA mechanism was set to
{1.2,1.2,1.04,1.04,1.02,1.02,1.01} for the NL4 �→ NL16 and {1.2,1.2,1.1,1.02,
1.015,1.01} for the Super4 �→ Super14 instances. Also, different time limits as stop-
ping conditions were used for different TTP instances, namely 5 minutes for the
NL4–6 and the Super4–6 instances, 30 minutes for the NL8 and Super8 instances
and 1 hour for the rest (NL10–16 and Super10–14).
The R and k values were determined after a number of preliminary experiments.

The restarting iteration value was based on the rate of improvement corresponding
to the first 107 iterations as shown in Figure 21.3. We did not tune the value of the
learning rates beforehand, because we wanted to employ different values to see the
effect of the learning rate on the hyper-heuristic performance. We aim to discover
that it is possible to construct a simple and effective hyper-heuristic without any
training nor intensive tuning process.

21.7.1 Comparison Between LA and SR in Heuristic Selection

The following tables present the performance of the tested hyper-heuristics for each
TTP instance. In the tables, we consider AVG: Average Objective Function Value,
MIN: Minimum Objective Function Value, MAX: Maximum Objective Function
Value, STD: Standard Deviation, TIME: Elapsed CPU Time in seconds to reach
to the corresponding best result, ITER: Number of Iterations to reach to the corre-
sponding best result.

Table 21.3: Results of the SR hyper-heuristic for the NL instances

SR NL4 NL6 NL8 NL10 NL12 NL14 NL16

AVG 8276 23916 39813 60226 115320 202610 286772
MIN 8276 23916 39721 59727 113222 201076 283133
MAX 8276 23916 40155 61336 116725 205078 289480
STD 0 0 181 468 1201 1550 2591

TIME ˜0 0.314 8 2037 2702 2365 2807
ITER 9,00E+00 1,39E+05 2,73E+06 5,17E+08 4,95E+08 3,17E+08 2,95E+08

In Tables 21.3 and 21.4, the results for the NL instances are given. For all the
instances, the L R-I or LR R-I performed better than the SR hyper-heuristic. This
situation is also valid for the Super instances as can be seen from the results in
Tables 21.5 and 21.6. However, the learning rate (λ ) of each best LA hyper-heuristic
(LAHH) for finding the best solution among all the trials may differ. These cases are
illustrated in the last rows of the LAHHs tables. This situation also occurs regarding
the average performance of the hyper-heuristics. In Tables 21.7 and 21.8, the results
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Table 21.4: Best results among the L R-I and LR R-I (L R-I + Restarting) hyper-
heuristics for the NL instances (in the λ row; B: Both L R-I & LR R-I, R: LR R-I)

LA NL4 NL6 NL8 NL10 NL12 NL14 NL16

AVG 8276 23916 39802 60046 115828 201256 288113
MIN 8276 23916 39721 59583 112873 196058 279330
MAX 8276 23916 40155 60780 117816 206009 293329
STD 0 0 172 335 1313 2779 4267

TIME ˜0 0.062 0.265 760 3508 1583 1726
ITER 1.90E+01 1.34E+03 8.23E+04 1.94E+08 6.35E+08 2.14E+08 1.79E+08

λ ALL 0.002(B) 0.002(B) 0.001 0.003 0.002 0.0075(R)

Table 21.5: Results of the SR hyper-heuristic for the Super instances

SR Super4 Super6 Super8 Super10 Super12 Super14

AVG 71033 130365 182626 325888 472829 630751
MIN 63405 130365 182409 322761 469276 607925
MAX 88833 130365 184581 329789 475067 648648
STD 12283 0 687 2256 1822 13908

TIME 3.063 0.016 10 756 3147 2742
ITER 1.90E+01 2.11E+03 2.85E+06 1.81E+08 5.42E+08 3.50E+08

Table 21.6: Best results among the L R-I and LR R-I (L R-I + Restarting) hyper-
heuristics for the Super instances (in the λ row; B: Both L R-I & LR R-I, R: LR R-
I)

LA Super4 Super6 Super8 Super10 Super12 Super14

AVG 71033 130365 182975 327152 475899 634535
MIN 63405 130365 182409 318421 467267 599296
MAX 88833 130365 184098 342514 485559 646073
STD 12283 0 558 6295 5626 13963

TIME ˜0 0.031 1 1731 3422 1610
ITER 8.00E+00 9.41E+02 1.49E+05 3.59E+08 5.12E+08 2.08E+08

λ ALL 0.01(B) 0.003(B) 0.002 0.005 0.001

can be seen when looking at the ranking (MS Excel Rank Function) results. The
rank of each hyper-heuristic was calculated as the average of the all ranks among
all the TTP benchmark instances. It can be seen that using a fixed learning rate
(λ1) is not a good strategy to solve all the instances. It can even cause the LAHHs
to perform worse than SR as presented in Table 21.7. Therefore, the key point for
increasing the performance of LAHHs is determining the right learning rates.
As mentioned before, learning heuristic selection can be hard due to the limited

room for improvement when using a small number of heuristics. A similar note was
raised concerning a reinforcement learning scoring strategy for selecting heuristics
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in [10]. It was shown that SR may perform better than the learning based selection
mechanism with poor scoring schemes. For learning automata, a similar issue can
be raised concerning the learning rate. The experimental results show that SR may
perform better than LA with respect to the heuristic selection. It may be due to
employing inappropriate learning rates for a problem instance.
Additionally, a restarting mechanism can further improve the performance of

pure LAHHs. The proposed restarting mechanism provides such improvement even
if it is quite simple. Again in Tables 21.7 and 21.8, the learning hyper-heuristics
with restarting (LR R− I) are generally better than the pure version with respect
to average performance. The underlying reason behind this improvement is that the
performance of a heuristic can change over different search regions. Thus, restarting
to learn for different regions with distinct characteristics can provide easy adaptation
under different search conditions. Therefore, restarting the learning process more
than once or using additional mechanisms based on the local characteristic changes
of a search space can be helpful for more effective learning.
Also, in Table 21.9, the result of a statistical comparison between the learning

hyper-heuristics and the hyper-heuristic with SR is given. The average performance
of the hyper-heuristics indicates that it is not possible to state a significant perfor-
mance difference between the LA and SR hyper-heuristics based on a T-Test within
95% confidence interval. Even if there is no significant difference, it is possible to
say that LA in general perform better as a heuristic selection than SR. On the other
hand, the T-Test shows a statistically significant difference between LA and SR with
respect to the best solutions found out of ten trails.

21.7.2 Comparison with Other Methods

When we compare the hyper-heuristic results to the best results in the literature,
we notice that they are equal for the small TTP instances (NL4–8 and Super4–8).
Our results on larger instances are not the best results in the literature. However, the
results that we provided in this paper were produced using small execution times
compared to some of the other approaches that are included in Tables 21.10 and
21.11.
Finally, we separately compare our results to those obtained by other TTP so-

lution methods. Hyper-heuristic approaches have been applied to the TTP before
[1, 13, 20]. As can be seen from Table 21.11, the best results were generated by
these hyper-heuristic techniques. The SR as a heuristic selection mechanism and
SA as a move acceptance criterion were used to construct a hyper-heuristic struc-
ture in [1]. Actually, the paper does not mention the term hyper-heuristic, but it
matches the definition. The authors from [1] and [20], which is the extension of
[1], generated the state of the art results for most of the NL instances. Compared to
our approach, they have a complex move acceptance mechanism that requires quite
some parameter tuning, and their experiments took much more time than ours. For
instance, in [1], the best result for NL16 was found after almost 4 days, be it with
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Table 21.7: Ranking corresponding to the average results among the hyper-heuristics
with L R-I, LR R-I (L R-I + Restarting) and SR heuristic selection mechanisms for
the NL instances (lower rank values are better)

λ1 L R-I NL4 NL6 NL8 NL10 NL12 NL14 NL16 RANK

0.001
AVG 8276 23916 39808 60046 115481 201505 288491

4.57
STD 0 0 183 335 947 2916 3513

0.002
AVG 8276 23916 39802 60573 115587 201256 289220

6.14
STD 0 0 172 738 918 3093 2299

0.003
AVG 8276 23916 40038 60510 115828 202762 290719

9.00
STD 0 0 307 727 1313 3838 3675

0.005
AVG 8276 23916 39908 60422 116174 203694 290009

8.86
STD 0 0 288 541 1867 2100 3681

0.075
AVG 8276 23916 39912 60606 116286 204712 288205

9.43
STD 0 0 210 644 1125 3097 2929

0.01
AVG 8276 23916 39836 60727 117256 205294 293704

10.36
STD 0 0 252 965 854 2305 1615

λ1 LR R-I NL4 NL6 NL8 NL10 NL12 NL14 NL16

0.001
AVG 8276 23916 39836 60563 115469 201234 288881

6.07
STD 0 0 252 714 957 3296 3370

0.002
AVG 8276 23916 39813 60449 116141 201984 285319

5.64
STD 0 0 181 1066 862 1911 3580

0.003
AVG 8276 23916 40097 60295 115242 202092 288040

5.57
STD 0 0 303 631 592 3644 4431

0.005
AVG 8276 23916 39848 60375 115958 202584 289355

7.29
STD 0 0 283 716 1895 2642 3399

0.075
AVG 8276 23916 39895 60454 115796 203060 288113

7.00
STD 0 0 224 721 945 2334 1928

0.01
AVG 8276 23916 39770 60503 115806 203429 288375

6.57
STD 0 0 136 696 386 3593 3366

SR NL4 NL6 NL8 NL10 NL12 NL14 NL16

AVG 8276 23916 39813 60226 115320 202610 286772
4.50

STD 0 0 136 696 386 3593 3366

slower PCs than ours. We are aware that it is not fair to compare the results that
were generated using different computers, but the execution time of 4 days is prob-
ably more than 1 hour (our execution time for NL16). Another hyper-heuristic for
the TTP was proposed in [13]. A population based hyper-heuristic that uses ACO
was applied to the NL instances. It reached the best results for the NL4-6 and good
enough feasible solutions for the rest. Compared to [1], the execution times were
smaller. Our results are better than those in [13]. As a whole, these results show that
hyper-heuristics have a great potential for solving hard combinatorial optimization
problems like the TTP.
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Table 21.8: Ranking corresponding to the average results among the hyper-heuristics
with L R-I, LR R-I (L R-I + Restarting) and SR heuristic selection mechanisms for
the Super instances (lower rank values are better)

λ1 L R-I Super4 Super6 Super8 Super10 Super12 Super14 RANK

0.001
AVG 71033 130365 182615 327268 476371 634535

7.25
STD 12283 0 346 4836 5618 13963

0.002
AVG 71033 130365 183629 327152 477237 626643

8.00
STD 12283 0 27 6295 5900 12918

0.003
AVG 71033 130365 182975 327588 481131 630109

9.33
STD 12283 0 558 4605 12226 14375

0.005
AVG 71033 130365 182533 327599 475899 629428

6.17
STD 12283 0 274 6753 5626 17992

0.075
AVG 71033 130365 183585 327604 480109 635947

10.50
STD 12283 0 1551 5012 6688 11880

0.01
AVG 71033 130365 182699 327523 478001 646711

8.83
STD 12283 0 428 3116 5570 16954

λ1 LR R-I Super4 Super6 Super8 Super10 Super12 Super14

0.001
AVG 71033 130365 182615 325961 476084 625490

5.08
STD 12283 0 346 5327 3519 12591

0.002
AVG 71033 130365 183255 325379 475779 615274

5.17
STD 12283 0 989 5562 3028 9147

0.003
AVG 71033 130365 182938 325407 475980 622210

5.33
STD 12283 0 552 1896 5777 15024

0.005
AVG 71033 130365 182727 327033 473861 629087

5.67
STD 12283 0 411 5941 2478 8345

0.075
AVG 71033 130365 182787 324098 477943 632881

7.00
STD 12283 0 713 2041 5857 3083

0.01
AVG 71033 130365 182953 326273 477175 629564

7.33
STD 12283 0 807 3863 2906 12415

SR Super4 Super6 Super8 Super10 Super12 Super14

AVG 71033 130365 182626 325888 472829 630751
5.33

STD 12833 0 687 2256 1822 13908

21.7.3 Effect of the Learning Rate (λ1)

LA perform better than random selection for LLHs with appropriate learning rates.
Therefore, it may be useful to look at the probabilistic behavior of LLHs under
different learning rates (λ1). In Figure 21.5, we show how the probability vector for
NL16 with λ1 = 0.01 changes over time as an example among all the probability
vectors. Regarding their probabilities (performance), we can rank the LLHs as H2,
H1, H4, H5, H3 from the best to the worst. In addition, the probabilities belonging to
the best two heuristics are very far from the rest, so we can say that some heuristics
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Table 21.9: T-Test results for the learning hyper-heuristics and the SR based hyper-
heuristic on the NL and Super instances

AVG | BEST LAHH SR LAHH SR
NL4 8276 8276 8276 8276
NL6 23916 23916 23916 23916
NL8 39770 39813 39721 39721
NL10 60046 60226 59583 59727
NL12 115242 115320 112873 113222
NL14 201234 202610 196058 201076
NL16 285319 286772 279330 283133

Super4 71033 71033 63405 63405
Super6 130365 130365 130365 130365
Super8 182533 182626 182409 182409
Super10 324098 325888 318421 322761
Super12 473861 472829 467267 469276
Super14 615274 639751 599296 607925

T-TEST 2,64E-01 3,13E-02

Table 21.10: Comparison between the best results obtained by the learning automata
hyper-heuristics (LAHHs) and the current best results (LB: Lower Bound)

TTP Inst. LAHH Best Difference (%) LB

NL4 8276 8276 0,00% 8276
NL6 23916 23916 0,00% 23916
NL8 39721 39721 0,00% 39721
NL10 59583 59436 0,25% 58831
NL12 112873 110729 1,88% 108244
NL14 196058 188728 3,88% 182797
NL16 279330 261687 6,74% 249477

Super4 63405 63405 0,00% 63405
Super6 130365 130365 0,00% 130365
Super8 182409 182409 0,00% 182409
Super10 318421 316329 0,66% 316329
Super12 467267 463876 0,73% 452597
Super14 599296 571632 4,84% 557070

perform much better than some others. That is, by using LA, we can easily rank and
classify LLHs.
In Figure 21.6, the behavior of the same heuristics to the same problem instance

but with a different learning rate λ1 = 0.001 is presented. The ranking of the heuris-
tics is the same as the previous one. However, now there is no strict distinction or
huge gap between the probabilities of the LLHs. The reason behind this experimen-
tal result is obvious. Using a smaller learning rate (λ1) will decrease the convergence
speed. This conclusion can be a meaningful point to determine the value of λ1 based
on running time limitations. That is, if there is enough time to run the LA on a prob-
lem, a smaller learning rate can be chosen. In the case of being in need of a quick
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Author(s) Method NL4 NL6 NL8 NL10 NL12 NL14 NL16
Easton et al. [18] Linear Programming

(LP)
8276 23916 441113 312623

Benoist et al. [4] A combination of
constraint program-
ming and lagrange
relaxation

8276 23916 42517 68691 143655 301113 437273

Cardemil [12] Tabu Search 8276 23916 40416 66037 125803 205894 308413
Zhang [36] Unknown (data from

TTP website)
8276 24073 39947 61608 119012 207075 293175

Shen and Zhang [32] ‘Greedy big step’
Meta-heuristic

39776 61679 117888 206274 281660

Lim et al. [25] SA and Hill-
climbing

8276 23916 39721 59821 115089 196363 274673

Langford [24] Unknown (data from
TTP website)

59436 112298 190056 272902

Crauwels and Oud-
heusden [17]

ACO with Local Im-
provement

8276 23916 40797 67640 128909 238507 346530

Anagnostopoulos et
al. [1]

SA 8276 23916 39721 59583 111248 188728 263772

Gaspero and Schaerf
[19]

Composite Neigh-
borhood Tabu Search
Approach

59583 111483 190174 270063

Chen et al. [13] Ant-Based Hyper-
heuristic

8276 23916 40361 65168 123752 225169 321037

Van Hentenryck and
Vergados [20]

Population-Based
SA

110729 188728 261687

This Paper Learning Automata
Hyper-heuristics
with ILTA

8276 23916 39721 59583 112873 196058 279330

Table 21.11: TTP solution methods compared, adapted from [13]

result, employing a higher learning rate will increase the speed of convergence and
help to find high quality results in a quicker way. Based on this relationship, an ef-
ficient value for a learning rate can be determined during the search. In addition to
the effect of the total execution time, a learning rate can be adapted based on the
performance of the applied heuristics and the changes regarding the evolvability of
a search space [33].

21.8 Discussion

Hyper-heuristics are easy-to-implement generic approaches to solve combinatorial
optimization problems. In this study, we applied learning automata (LA) hyper-
heuristics to a set of TTP instances. We saw that hyper-heuristics are promising
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Fig. 21.5: Evolution of the probability vector for NL16 with λ1 = 0.01

Fig. 21.6: Evolution of the probability vector for NL16 with λ1 = 0.001

approaches for the TTP as they performwell on different combinatorial optimization
problems.
In this paper, we introduced both a new selection mechanism based on LA and an

acceptance criterion, i.e., the Iteration Limited Threshold Accepting (ILTA). Based
on the results of the experiments, it can be concluded that LA gives more meaningful
decisions for the heuristic selection process and reach better results in less time than
Simple Random (SR) heuristic selection, which seemed to be effective especially
for small heuristic sets. The new hyper-heuristic method consistently outperforms



21 A Hyper-heuristic with Learning Automata for the Traveling Tournament Problem 343

the SR hyper-heuristic using a small set of low-level heuristics (LLHs). Moreover,
the simple general method easily generates high-quality solutions for the known
TTP benchmarks and the recently added Super instances.3

The new move acceptance mechanism tries to provide an efficient trade-off be-
tween intensification and diversification. If the aim is to study the effectiveness of a
heuristic selection, a mechanism that accepts AM can be employed. But if the aim is
to observe the performance of a move acceptance mechanism in a hyper-heuristic,
then the best option is to combine it with SR heuristic selection. AM and SR are the
blindest approaches that can be used in hyper-heuristics. The results of the hyper-
heuristic that consists of SR heuristic selection and ILTA move acceptance for the
NL and Super instances are very promising. Using LA instead of SR with ILTA
provides further improvements.
In future research, we will apply the learning hyper-heuristics to other hard com-

binatorial optimization problems to verify their general nature. For learning au-
tomata, an adaptive learning rate strategy based on the evolvability of the search
space will be built. Next, an effective restarting mechanism will be developed to
temporarily increase the effect of the local changes on the probability vector. Also,
we will focus on fitness landscape analysis for hyper-heuristics to make decisions
more meaningful and effective. In addition to that, the performance of LA on larger
heuristic sets will be investigated. Finally, we will experiment both with different
LA update schemes and with a dynamic evolving parameter R for ILTA.
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