
COE206 – Principles of Artificial
Intelligence

Mustafa MISIR

Istinye University, Department of Computer Engineering

mustafa.misir@istinye.edu.tr

http://mustafamisir.github.io

http://memoryrlab.github.io

mustafa.misir@istinye.edu.tr
http://mustafamisir.github.io
http://memoryrlab.github.io

L6: Constraint Satisfaction
Problems (CSPs)1

1
https://en.wikipedia.org/wiki/Constraint_satisfaction_problem

1 / 96

https://en.wikipedia.org/wiki/Constraint_satisfaction_problem

Outline

I Formal Definition

I Constraint Propagation

I Backtracking Search

I Local Search

I Problem Structure

2 / 96

Outline

I Formal Definition

I Constraint Propagation

I Backtracking Search

I Local Search

I Problem Structure

3 / 96

Constraint Satisfaction Problems (CSPs)

A constraint satisfaction problem consists of three components, X,
D, and C:

I X is a set of variables, {X1, . . . , Xn}
I D is a set of domains, {D1, . . . , Dn}, one for each variable

I C is a set of (hard) constraints that specify allowable
combinations of values

Each domain Di consists of a set of allowable values, v1, . . . , vk for
variable Xi.

Each constraint Ci consists of a pair 〈scope, rel〉, where

I scope is a tuple of variables that participate in the constraint
and

I rel is a relation that defines the values that those variables
can take on.

4 / 96

CSP – Variables / Domains3

A discrete variable is one whose domain is finite or countably
infinite2.

A binary variable is a discrete variable with two values in its
domain.

I One particular case of a binary variable is a Boolean
variable, which is a variable with domain {true, false}.

A variable whose domain corresponds to the real values is a
continuous variable.

2
https://mathworld.wolfram.com/CountablyInfinite.html

3
https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html

5 / 96

https://mathworld.wolfram.com/CountablyInfinite.html
https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html

CSP – Constraints4

A constraint can be evaluated on any assignment that extends its
scope.

Consider constraint c on S:

I Assignment A on S′, where S ⊆ S′ satisfies c if A, restricted
to S, is mapped to true by the relation.

I Otherwise, the constraint is violated by the assignment.

4
https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html

6 / 96

https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html

CSP – Constraints5

A unary constraint is a constraint on a single variable

I e.g., B ≤ 3

A binary constraint is a constraint over a pair of variables

I e.g., A ≤ B

In general, a k-ary constraint has a scope of size k

I e.g. A + B = C is a 3-ary (ternary) constraint

5
https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html – image source:

https://www.hackingwithswift.com/articles/74/understanding-protocol-associated-types-and-their-constraints

7 / 96

https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html
https://www.hackingwithswift.com/articles/74/understanding-protocol-associated-types-and-their-constraints

CSP – Constraints6

Constraints are defined either by

I their intension, in terms of formulas

I their extension, listing all the assignments that are true

6
https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html

8 / 96

https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html

CSP – Constraints7

Consider a constraint on the possible dates for 3 activities.

I A, B, C are the variables that represent the date of each
activity.

I The domain of each variable is {1, 2, 3, 4}

A constraint with scope {A,B,C} can be described by its
intension, using a formula of the legal assignments, e.g.
I This formula says that A is on the same date or before B, and B is

before day 3, B is before C, and it cannot be that A and B are on the
same date and C is on or before day 3.

(A ≤ B) ∧ (B < 3) ∧ (B < C) ∧ ¬(A = B ∧ C ≤ 3)

This constraint could instead have its relation defined
its extension, as a table of the legal assignments:

7
https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html – ∧ means and; ¬ means not

9 / 96

https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS2.html

CSP – Scopes8

Example constraints and their scopes

I V2 6= 2 has scope {V2}
I V1 > V2 has scope {V1, V2}
I V1 + V2 + V4 < 5 has scope {V1, V2, V4}

8
https://www.cs.ubc.ca/~mack/CS322/lectures/3-CSP2.pdf

10 / 96

https://www.cs.ubc.ca/~mack/CS322/lectures/3-CSP2.pdf

CSP – Relations

A relation can be represented as an explicit list of all tuples of
values that satisfy the constraint, or as an abstract relation that
supports two operations:

I testing if a tuple is a member of the relation

I enumerating the members of the relation

e.g. if X1 and X2 both have the domain {A,B}, then the
constraint saying the two variables must have different values can
be written as

〈(X1, X2), [(A,B), (B,A)]〉 or as 〈(X1, X2), X1 6= X2]〉

11 / 96

CSP – Delivery Robot9, e.g.

A delivery robot must carry out a number of delivery activities, a,
b, c, d, and e.

I Each activity happens at any of times 1, 2, 3, 4

I Let A be the variable representing the time that activity a
will occur, and similarly for the other activities.

I The variable domains, which represent possible times for
each of the deliveries, are {1, 2, 3, 4}

Suppose the following constraints must be satisfied:

{(B 6= 3), (C 6= 2), (A 6= B), (B 6= C), (C < D), (A = D), (E <
A), (E < B), (E < C), (E < D), (B 6= D)}

9
https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS3.html

12 / 96

https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS3.html

CSP – Crossword Puzzle10, e.g.

I X, variables are words that have to be filled in

I D, domains are English words of correct length

I C, constraints: words have the same letters at cells where
they intersect

10
https://www.cs.ubc.ca/~mack/CS322/lectures/3-CSP2.pdf – image source:

https://www.ttnews.com/articles/crossword-puzzle-solution-june-3-2019

13 / 96

https://www.cs.ubc.ca/~mack/CS322/lectures/3-CSP2.pdf
https://www.ttnews.com/articles/crossword-puzzle-solution-june-3-2019

CSP – Sudoku11, e.g.

I X, variables are cells

I D, domain of each variable is 1,2,3,4,5,6,7,8,9

I C, constraints: rows, columns, boxes contain all different
numbers

11
https://www.cs.ubc.ca/~mack/CS322/lectures/3-CSP2.pdf

14 / 96

https://www.cs.ubc.ca/~mack/CS322/lectures/3-CSP2.pdf

CSP – n-Queens12, e.g.

I X, variables are the locations of queens on a chess board

I D, domains are grid coordinates

I C, constraints: no queen can attack another

12
https://www.cs.ubc.ca/~mack/CS322/lectures/3-CSP2.pdf

15 / 96

https://www.cs.ubc.ca/~mack/CS322/lectures/3-CSP2.pdf

CSP
To solve a CSP, we need to define a state space and the notion of
a solution.

I Each state in a CSP is defined by an assignment of values to
some or all of the variables, {Xi = vi, Xj = vj , . . .}.

I An assignment that does not violate any constraints is called
a consistent / legal assignment.

I A complete (total) assignment is one in which every
variable is assigned.

I A solution to a CSP is a consistent, complete assignment.

I A partial assignment is one that assigns values to only some
of the variables.

I A possible world is defined to be a total assignment; it is a
function from variables into values that assigns a value to
every variable.
I If world w is the assignment
{X1 = v1, X2 = v2, . . . , Xk = vk}, variable Xi has value vi in
world w.

16 / 96

CSP – Possible Worlds13, e.g.

If there are n variables, each with domain size d, there are dn

possible worlds.

I e.g. for 2 variables, A with domain {0, 1, 2} and B with
domain {true, false}, there are 6 possible worlds:

w0 = {A = 0, B = true}
w1 = {A = 0, B = false}
w2 = {A = 1, B = true}
w3 = {A = 1, B = false}
w4 = {A = 2, B = true}
w5 = {A = 2, B = false}

A possible world is a model of the constraints – a model is a
possible world that satisfies all of the constraints

13
https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS1.html

17 / 96

https://artint.info/2e/html/ArtInt2e.Ch4.S1.SS1.html

CSP – Map Coloring, e.g.

Coloring each region either red, green, or blue in such a way that
no neighboring regions have the same color.

18 / 96

CSP – Map Coloring, e.g.
Variables representing the regions:

X = {WA,NT,Q,NSW, V, SA, T}

The domain of each variable is the set

Di = red, green, blue

There are 9 constraints14

C = {SA 6= WA,SA 6= NT, SA 6= Q,SA 6= NSW,SA 6= V,

WA 6= NT,NT 6= Q,Q 6= NSW,NSW 6= V }

SA 6= WA is a shortcut for 〈(SA,WA), SA 6= WA〉, where
SA 6= WA can be fully enumerated as:

{(red, green), (red, blue), (green, red),
(green, blue), (blue, red), (blue, green)}

14
The constraints require neighboring regions to have distinct colors and there are nine places where regions border

19 / 96

CSP – Map Coloring, e.g. Sample Solution

{WA = red,NT = green,Q = red,NSW = green,

V = red, SA = blue, T = red}

20 / 96

CSP – Map Coloring, e.g. Constraint Graph

Nodes are variables and links / arcs represent constraints15

15
binary CSP as each constraint relates at most two variables

21 / 96

CSP – Job-Shop Scheduling, e.g. Car Assembly16

Problem can be defined as multiple tasks:

I Each task is a variable, where its value is the time that the
task starts, expressed as an integer number of minutes

I Constraints can assert that one task must occur before
another – e.g. a wheel must be installed before the wheel-cap

I Constraints can also specify that a task completion time

16
image source: https://ferntransport.wordpress.com/about/

22 / 96

https://ferntransport.wordpress.com/about/

CSP – Job-Shop Scheduling, e.g. Car Assembly

Consisting of 15 tasks – each represented with a variable:

I install axles (front and back), affix all four wheels (right and
left, front and back), tighten nuts for each wheel, affix
hubcaps, and inspect the final assembly.

X = {AxleF , AxleB,
WheelRF ,WheelLF ,WheelRB,WheelLB,

NutsRF , NutsLF , NutsRB, NutsLB,

CapRF , CapLF , CapRB, CapLB,

Inspected}

The value of each variable is the start time.

23 / 96

CSP – Job-Shop Scheduling, e.g. Car Assembly

Precedence constraints – task T1 must occur before task T2, and
task T1 takes duration d1 to complete:

T1 + d1 ≤ T2

The axles have to be in place before the wheels are put on, and it
takes 10 minutes to install an axle:

AxleF + 10 ≤WheelRF ; AxleF + 10 ≤WheelLF
AxleB + 10 ≤WheelRB ; AxleB + 10 ≤WheelLB

24 / 96

CSP – Job-Shop Scheduling, e.g. Car Assembly

For each wheel, we must affix the wheel (which takes 1 minute),
then tighten the nuts (2 minutes), and finally attach the hubcap (1
minute, but not represented yet):

WheelRF + 1 ≤ NutsRF ; NutsRF + 2 ≤ CapRF

WheelLF + 1 ≤ NutsLF ; NutsLF + 2 ≤ CapLF
WheelRB + 1 ≤ NutsRB ; NutsRB + 2 ≤ CapRB

WheelLB + 1 ≤ NutsLB ; NutsLB + 2 ≤ CapLB

With 4 workers to install wheels, but they have to share one tool
that helps put the axle in place.

I disjunctive constraint to say that AxleF and AxleB must
not overlap in time; either one comes first or the other does:

(AxleF + 10 ≤ AxleB) or (AxleB + 10 ≤ AxleF)

25 / 96

CSP – Job-Shop Scheduling, e.g. Car Assembly

The inspection comes last and takes 3 minutes.

I For every variable except Inspect we add a constraint of the
form X + dX ≤ Inspect.

Whole assembly should be done in 30 minutes.

I achieve that by limiting the domain of all variables:

Di = {1, 2, 3, . . . , 27}

26 / 96

Outline

I Formal Definition

I Constraint Propagation

I Backtracking Search

I Local Search

I Problem Structure

27 / 96

Constraint Propagation

An algorithm can search (choose a new variable assignment from
several possibilities) or do a specific type of inference called
constraint propagation:

I using the constraints to reduce the number of legal values for
a variable, which in turn can reduce the legal values for
another variable, and so on.

Constraint propagation may be interconnected with search, or it
may be done as a preprocessing step, before search starts.

I Sometimes this preprocessing can solve the whole problem, so
no search is required at all.

28 / 96

Constraint Propagation – Node Consistency

A single variable (corresponding to a node in the CSP network) is
node-consistent if all the values in the variable’s domain satisfy
the variable’s unary constraints.

I e.g. in the variant of the Australia map-coloring problem
where South Australians dislike green, the variable SA starts
with domain {red, green, blue},

I can make it node consistent by eliminating green, leaving
SA with the reduced domain {red, blue}

A network is node-consistent if every variable in the network is
node-consistent.

29 / 96

Constraint Propagation – Arc Consistency

Simplest form of propagation makes each arc consistent.

A variable in a CSP is arc-consistent if every value in its domain
satisfies the variable’s binary constraints.

I Xi is arc-consistent with respect to another variable Xj if
for every value in the current domain Di there is some value
in the domain Dj that satisfies the binary constraint on the
arc (Xi, Xj)

I A network is arc-consistent if every variable is arc consistent
with every other variable

Pruning out possible values for the variables in a CSP which
cannot possibly be part of a consistent solution

30 / 96

Constraint Propagation – Arc Consistency

e.g. consider the constraint Y = X2 where the domain of both
X and Y is the set of digits:

〈(X,Y), (0, 0), (1, 1), (2, 4), (3, 9))〉

To make X arc-consistent with respect to Y , we reduce X’s
domain to {0, 1, 2, 3}.
I If we also make Y arc-consistent with respect to X, then

Y ’s domain becomes {0, 1, 4, 9} and the whole CSP is
arc-consistent.

All the variables which cannot possibly be part of a consistent
solution are removed!

31 / 96

Constraint Propagation – Arc Consistency

On the other hand, arc consistency can
do nothing for the Australia map-coloring
problem. Consider the following inequal-
ity constraint on (SA,WA):

{(red, green), (red, blue), (green, red),
(green, blue), (blue, red), (blue, green)}

No matter what value you choose for SA (or for WA), there is a
valid value for the other variable.

I Applying arc consistency has no effect on the domains of
either variable.

32 / 96

Constraint Propagation – Arc Consistency

X → Y is consistent iff for every value x of X there is some
allowed y

If X loses a value, neighbors of X need to be rechecked arc
consistency which detects failure earlier than forward checking

I can be run as a preprocessor or after each assignment

33 / 96

Constraint Propagation – Arc Consistency, AC-317

17
https://en.wikipedia.org/wiki/AC-3_algorithm

34 / 96

https://en.wikipedia.org/wiki/AC-3_algorithm

Constraint Propagation – Path Consistency

Arc consistency tightens down the domains (unary constraints)
using the arcs (binary constraints).

I To make progress on problems like map coloring, we need a
stronger notion of consistency.

Path consistency tightens the binary constraints by using
implicit constraints that are inferred by looking at triples of
variables.

35 / 96

Constraint Propagation – K-Consistency

Stronger forms of propagation can be defined with the notion of
k-consistency.

I A CSP is k-consistent if, for any set of k − 1 variables and for
any consistent assignment to those variables, a consistent
value can always be assigned to any kth variable.

1 3 consistency:

I 1-consistency says that, given the empty set, we can make any
set of one variable consistent: this is what we called node
consistency.

I 2-consistency is the same as arc consistency.

I For binary constraint networks, 3-consistency is the same as
path consistency.

36 / 96

Constraint Propagation – Global Constraints

A global constraint is one involving an arbitrary number of
variables (but not necessarily all variables).

I e.g. Alldiff : all of the variables involved in the constraint
must have different values

Global constraints occur frequently in real problems and can be
handled by special-purpose algorithms that are more efficient than
the general-purpose methods described so far.

37 / 96

Constraint Propagation – Global Constraints

resource (atmost) constraint in a scheduling problem,
P1, . . . , P4 denote the numbers of personnel assigned to each task

I The constraint that no more than 10 personnel are assigned
in total is written as Atmost(10, P1, P2, P3, P4).

Domains are represented by upper / lower bounds and are
managed by bounds propagation

I e.g. in an airline-scheduling problem, let’s suppose there are
two flights, F1 and F2, for which the planes have capacities
165 and 385, respectively.

I The initial domains for the numbers of passengers on each
flight are then

D1 = [0, 165] and D2 = [0, 385]

38 / 96

Constraint Propagation – Global Constraints

Now suppose we have the additional constraint that the two
flights together must carry 420 people: F1 + F2 = 420.

I Propagating bounds constraints, we reduce the domains to

D1 = [35, 165] and D2 = [255, 385]

A CSP is bounds consistent if for every variable X, and for both
the lower / upper-bound values of X, there exists some value of
Y that satisfies the constraint between X and Y for every
variable Y .

39 / 96

Constraint Propagation, e.g. Sudoku

A Sudoku board consists of 81 squares, some of which are initially
filled with digits from 1 to 9.
I The puzzle is to fill in all the remaining squares such that no digit

appears twice in any row, column, or 3 × 3 box.

40 / 96

Constraint Propagation, e.g. Sudoku

A Sudoku puzzle can be considered a CSP with 81 variables, one
for each square.
I The variables are A1 through A9 for the top row (left to right), down to

I1 through I9 for the bottom row.

I The empty squares have the domain D = {1, 2, 3, 4, 5, 6, 7, 8, 9} and the
prefilled squares have a domain consisting of a single value.

I There are 27 different Alldiff constraints: one for each row, column, and
box of 9 squares.

Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)
Alldiff(B1, B2, B3, B4, B5, B6, B7, B8, B9)

. . .
Alldiff(A1, B1, C1, D1, E1, F1, G1, H1, I1)
Alldiff(A2, B2, C2, D2, E2, F2, G2, H2, I2)

. . .
Alldiff(A1, A2, A3, B1, B2, B3, C1, C2, C3)
Alldiff(A4, A5, A6, B4, B5, B6, C4, C5, C6)

. . .

41 / 96

Outline

I Formal Definition

I Constraint Propagation

I Backtracking Search

I Local Search

I Problem Structure

42 / 96

Backtracking Search
The algorithm is modeled on the recursive depth-first search – two
critical elements: variable and value ordering

43 / 96

Backtracking Search – Map Coloring, e.g.

44 / 96

Backtracking Search – Map Coloring, e.g.

45 / 96

Backtracking Search – Map Coloring, e.g.

46 / 96

Backtracking Search – Map Coloring, e.g.

47 / 96

Improving Backtracking Search

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

48 / 96

Backtracking Search – Minimum Remaining Values (MRV)

Choose the variable with the fewest legal values (most constrained
variable) – a.k.a. fail first heuristic

I Such a variable is most likely to cause a failure soon

I If a variable X has no legal values left, the MRV heuristic will
select X and failure will be detected immediately – avoiding
pointless searches through other variables.

49 / 96

Backtracking Search – Minimum Remaining Values

Suppose we already made the assignments of red to WA and
green to NT .

I There is only one possible value left for SA.

It makes sense to assign SA, rather than
the one for Q (which has two possible
values left)

50 / 96

Backtracking Search – Degree Heuristic

Tie-breaker among MRV variables

I choose the variable with the most constraints on remaining
variables

The degree heuristic attempts to reduce the branching factor on
future choices by selecting the variable that is involved in the
largest number of constraints on other unassigned variables.

51 / 96

Backtracking Search – Degree Heuristic
The MRV heuristic doesn’t help at all in choosing the first region
to color in Australia, because initially every region has three legal
colors.

SA is the variable with highest degree 5 (number of neighboring
cities); the other variables have degree 2 or 3, except for T , which
has degree 0.

I Once SA is chosen, applying the degree heuristic solves the
problem without any false steps–you can choose any
consistent color at each choice point and still arrive at a
solution with no backtracking.

52 / 96

Backtracking Search – Least Constraining Value

Once a variable has been selected, the algorithm must decide on
the order in which to examine its values

Given a variable, choose the least constraining value:

I the one that rules out the fewest values in the remaining
variables

53 / 96

Backtracking Search – Least Constraining Value

Suppose that we have generated the partial assignment with
WA = red and NT = green and that our next choice is for Q.

I blue would be a bad choice because it eliminates the last legal
value left for Q’s neighbor, SA.

I The least constraining value heuristic prefers red to blue.

In general, the heuristic is trying to leave the maximum flexibility
for subsequent variable assignments.

54 / 96

Backtracking Search – Forward Checking

Inference can be powerful in the course of a search:

I every time we make a choice of a value for a variable, we
have a brand-new opportunity to infer new domain reductions
on the neighboring variables.

forward checking offers inference:

I Whenever a variable X is assigned, the forward-checking
process establishes arc consistency for it: for each
unassigned variable Y that is connected to X by a
constraint, delete from Y ’s domain any value that is
inconsistent with the value chosen for X.

As forward checking only does arc consistency inferences, no
reason to do forward checking if we have already done arc
consistency as a preprocessing step.

55 / 96

Backtracking Search – Forward Checking, e.g.

Keep track of remaining legal values for unassigned variables

I Terminate search when any variable has no legal values

56 / 96

Backtracking Search – Forward Checking, e.g.

Assign {WA = red} effects on other variables

I NT can no longer be red

I SA can no longer be red

57 / 96

Backtracking Search – Forward Checking, e.g.

Assign {Q = green} effects on other variables

I NT can no longer be green

I NSW can no longer be green

I SA can no longer be green

58 / 96

Backtracking Search – Forward Checking, e.g.

If V is assigned blue effects on other variables

I SA is empty

I NSW can no longer be blue

Detected that partial assignment is inconsistent with the
constraints and backtracking can occur.

59 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

4 queens, {X1, X2, X3, X4}, each with the domain {1, 2, 3, 4}
referring to the column indices

60 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

61 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

62 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

63 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

64 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

65 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

66 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

67 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

68 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

69 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

70 / 96

Backtracking Search – Forward Checking, e.g. 4-Queens

71 / 96

Outline

I Formal Definition

I Constraint Propagation

I Backtracking Search

I Local Search

I Problem Structure

72 / 96

Local Search

Use a complete-state formulation:

I the initial state assigns a value to every variable, and the
search changes the value of one variable at a time

e.g. in 8-queens, the initial state is a random
configuration of 8 queens in 8 columns, and
each step moves a single queen to a new
position in its column

I Typically, the initial guess violates
several constraints.

73 / 96

Local Search – Min-Conflicts18, e.g. 8-Queens

In choosing a new value for a variable, the most obvious heuristic
is to select the value that results in the minimum number of
conflicts with other variable – the min-conflicts heuristic

The function counts the number of constraints violated by a
particular value, given the rest of the current assignment.

18
the initial state may be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each variable in turn.

74 / 96

Local Search – Min-Conflicts, e.g. 8-Queens

A two-step solution using min-conflicts:
I At each stage, a queen is chosen for reassignment in its column.

I The number of conflicts (in this case, the number of attacking queens) is
shown in each square

I The algorithm moves the queen to the min-conflicts square, breaking ties
randomly

75 / 96

Outline

I Formal Definition

I Constraint Propagation

I Backtracking Search

I Local Search

I Problem Structure

76 / 96

Problem Structure, e.g.

The constraint graph for Australia indicates that Tasmania is not
connected to the mainland.

Coloring Tasmania and the mainland
are independent subproblems

I any solution for the mainland
combined with any solution for
Tasmania yields a solution for
the whole map

77 / 96

Problem Structure19

Independence can be ascertained simply by finding connected
components of the constraint graph.

I Each component corresponds to a subproblem CSPi

I If assignment Si is a solution of CSPi,
⋃

i Si is a solution of⋃
iCSPi

Consider the following:

I suppose each CSPi has c variables from the total of n
variables, where c is a constant

I there are n/c subproblems, each of which takes at most dc

work to solve, where d is the size of the domain

I the total work is O(dcn/c), which is linear in n; without the
decomposition, the total work is O(dn) – exponential in n

19
dividing a Boolean CSP with 80 variables into 4 subproblems reduces the worst-case solution time from the lifetime of the universe down to less than a second.

78 / 96

Problem Structure

Completely independent subproblems are practical, but rare.
Fortunately, some other graph structures are also easy to solve.

I e.g. a constraint graph is a tree when any two variables are
connected by only one path

The key is a new notion of consistency, called directed arc
consistency (DAC).

I A CSP is defined to be directed arc-consistent under an
ordering of variables X1, X2, . . . , Xn if and only if every Xi is
arc-consistent with each Xj for j > i

79 / 96

Problem Structure — DAC

I Only one pass is required

I Once xi is made arc-consistent with respect to xi ≺ xj ,
removing values from xi such that the arc-consistency of xi
wrt. xj is not destroyed

80 / 96

Problem Structure — DAC, e.g.20

Consider a CSP with 3 variables in this order: x ≺ y ≺ z

I domains Dx = Dy = {1, 2, 3} and Dz = {0, 2, 3}
I constraints C: x < y, y < z, x > z

20
https://www.cs.upc.edu/~erodri/webpage/cps/theory/cp/local-consistency/slides.pdf

81 / 96

https://www.cs.upc.edu/~erodri/webpage/cps/theory/cp/local-consistency/slides.pdf

Problem Structure — DAC, e.g.

Consider a CSP with 3 variables in this order: x ≺ y ≺ z

I domains Dx = Dy = {1, 2, 3} and Dz = {0, 2, 3}
I constraints C: x < y, y < z, x > z

82 / 96

Problem Structure — DAC, e.g.

Consider a CSP with 3 variables in this order: x ≺ y ≺ z

I domains Dx = Dy = {1, 2, 3} and Dz = {0, 2, 3}
I constraints C: x < y, y < z, x > z

83 / 96

Problem Structure — DAC, e.g.

Consider a CSP with 3 variables in this order: x ≺ y ≺ z

I domains Dx = Dy = {1, 2, 3} and Dz = {0, 2, 3}
I constraints C: x < y, y < z, x > z

84 / 96

Problem Structure — DAC, e.g.

Consider a CSP with 3 variables in this order: x ≺ y ≺ z

I domains Dx = Dy = {1, 2, 3} and Dz = {0, 2, 3}
I constraints C: x < y, y < z, x > z

85 / 96

Problem Structure

To solve a tree-structured CSP, first pick any variable to be the
root of the tree, and choose an ordering of the variables such that
each variable appears after its parent in the tree – called a
topological sort of the variables.

(a) The constraint graph of a tree-structured CSP

(b) A linear ordering of the variables consistent with the tree
with A as the root – a topological sort

86 / 96

Problem Structure

Any tree with n nodes has n− 1 arcs, so make this graph
directed arc-consistent in O(n) steps, each of which must
compare up to d possible domain values for two variables, for a
total time of O(nd2).

I Once we have a directed arc-consistent graph, just down
the list of variables and choose any remaining value.

I Since each link from a parent to its child is arc consistent,
for any value we choose for the parent, there will be a valid
value left to choose for the child - no backtracking; move
linearly through the variables – the Tree CSP Solver

87 / 96

Problem Structure

88 / 96

	Formal Definition
	Constraint Propagation
	Backtracking Search
	Local Search
	Problem Structure

	pbs@ARFix@9:
	pbs@ARFix@11:
	pbs@ARFix@8:
	pbs@ARFix@7:
	pbs@ARFix@4:
	pbs@ARFix@3:
	pbs@ARFix@5:
	pbs@ARFix@1:
	pbs@ARFix@10:
	pbs@ARFix@2:
	pbs@ARFix@6:
	pbs@ARFix@84:
	pbs@ARFix@15:
	pbs@ARFix@42:
	pbs@ARFix@69:
	pbs@ARFix@59:
	pbs@ARFix@14:
	pbs@ARFix@36:
	pbs@ARFix@66:
	pbs@ARFix@25:
	pbs@ARFix@19:
	pbs@ARFix@29:
	pbs@ARFix@86:
	pbs@ARFix@17:
	pbs@ARFix@79:
	pbs@ARFix@71:
	pbs@ARFix@13:
	pbs@ARFix@89:
	pbs@ARFix@75:
	pbs@ARFix@57:
	pbs@ARFix@52:
	pbs@ARFix@64:
	pbs@ARFix@27:
	pbs@ARFix@23:
	pbs@ARFix@43:
	pbs@ARFix@78:
	pbs@ARFix@81:
	pbs@ARFix@30:
	pbs@ARFix@80:
	pbs@ARFix@88:
	pbs@ARFix@37:
	pbs@ARFix@56:
	pbs@ARFix@87:
	pbs@ARFix@22:
	pbs@ARFix@26:
	pbs@ARFix@16:
	pbs@ARFix@65:
	pbs@ARFix@70:
	pbs@ARFix@24:
	pbs@ARFix@60:
	pbs@ARFix@31:
	pbs@ARFix@40:
	pbs@ARFix@45:
	pbs@ARFix@72:
	pbs@ARFix@63:
	pbs@ARFix@76:
	pbs@ARFix@46:
	pbs@ARFix@32:
	pbs@ARFix@39:
	pbs@ARFix@51:
	pbs@ARFix@38:
	pbs@ARFix@49:
	pbs@ARFix@58:
	pbs@ARFix@62:
	pbs@ARFix@74:
	pbs@ARFix@68:
	pbs@ARFix@85:
	pbs@ARFix@55:
	pbs@ARFix@61:
	pbs@ARFix@77:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@28:
	pbs@ARFix@18:
	pbs@ARFix@12:
	pbs@ARFix@73:
	pbs@ARFix@35:
	pbs@ARFix@67:
	pbs@ARFix@20:
	pbs@ARFix@47:
	pbs@ARFix@90:
	pbs@ARFix@50:
	pbs@ARFix@54:
	pbs@ARFix@53:
	pbs@ARFix@82:
	pbs@ARFix@21:
	pbs@ARFix@83:
	pbs@ARFix@48:
	pbs@ARFix@44:
	pbs@ARFix@41:

