COE206 — Principles of Artificial

Intelligence

Mustafa MISIR
Istinye University, Department of Computer Engineering
mustafa.misir@istinye.edu.tr

http://mustafamisir.github.io
http://memoryrlab.github.io

- ARTIFICIAL INTELLIGENCE
IN MEDICINE RESEARCH CENTER

ISTINYE UNIVERSITY

mustafa.misir@istinye.edu.tr
http://mustafamisir.github.io
http://memoryrlab.github.io

L4: Local Search

1
https://en.uikipedia.org/wiki/Local_search_(optimization)

1/45

https://en.wikipedia.org/wiki/Local_search_(optimization)

Outline

» Optimization Problems
» Hill-Climbing

» Simulated Annealing
» Genetic Algorithms

2/45

Outline

» Optimization Problems
» Hill-Climbing

» Simulated Annealing
» Genetic Algorithms

3/45

Optimization Problems’

Finding the best state according to some objective function, e.g.

> timetable of classes (looks at clashes, awkward hours,
unsuitable rooms ...)

> route for a garbage collector truck (visiting all the bins
without driving around too much)

2
http://www.cs.nott.ac.uk/~psznza/G52PAS/lecture3. pdf

4/45

http://www.cs.nott.ac.uk/~psznza/G52PAS/lecture3.pdf

Optimization Problems — lterative Improvement’

Often no clear goal test and path (or its cost) to solution does not
matter

In such cases, can use iterative improvement algorithms:

P keep a single current state, try to improve it

3
image source: https://en.wikipedia.org/wiki/Fitness_landscape

5/45

https://en.wikipedia.org/wiki/Fitness_landscape

Optimization Problems — Solution Space

Assuming the objective function gives a single numerical value, we
can plot solutions against this value;

» local search explore this /andscape (location is the solution
and elevation is the objective function value)

P assuming the bigger the value of the function the better: we
are looking for the global maximum

Complete local search: finds a solution if it exists
Optimal local search: finds a global maximum

6/45

Optimization Problems — Landscape

A one-dimensional state-space landscape in which elevation
corresponds to the objective function.

» The aim is to find the global maximum.

objective function .
_— global maximum

shoulder

local maximum

“flat” local maximum

state space
current
state

7/45

Optimization Problems — Landscape

objective function

global maximum
— ¢

shoulder

local maximum

—

“flat” local maximum

state space
current
state

» Current state: a state where an agent is currently at.

» Global maximum: the best possible state of state space, with the highest
value of objective function.

» Local maximum: a state which is better than its neighbors, yet there is
one or more better states.

» Flat local maximum: a flat space where all the neighbors of a current
state have the same value.

» Shoulder: a plateau with an uphill edge.

8/45

Optimization Problems — Landscape

4
graphics source: https://deap.readthedocs . io/en/master/api/benchmarks.html
9/45

https://deap.readthedocs.io/en/master/api/benchmarks.html

Optimization Problems — Traveling Salesman’, e.g.

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly
with thousands of cities

5
https://en.wikipedia.org/wiki/Travelling_salesman_problem

10/45

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Optimization Problems — n-Queens’, e.g.

Put n queens on an n X n board with no two queens on the same
row, column, or diagonal

> Move a queen to reduce number of conflicts

» Heuristic h: number of attacks

R g

Almost always solves n-queens problems instantaneously for very
large n, e.g., n =1 million

h=0

6
https://en.wikipedia.org/wiki/Eight_queens_puzzle

11/45

https://en.wikipedia.org/wiki/Eight_queens_puzzle

Local Search’

A simple algorithm, starting at a given initial solution.

P> At each iteration, the heuristic replaces the current solution
by a neighbor that improves the objective function

00011 2088
11011 144
10111 1028

10001 2774
10010 2493 10000 3027

best neighbor
local optima

Iteration 1 Iteration 2 Iteration 3

Metaheuristics: From Design to Implementation by El-Ghazali Talbi - 2009 Wiley: e.g. Local search process using a binary representation of solutions, a flip move
operator, and the best neighbor selection strategy. The objective function to maximize is ° — 6022 + 900. The global optimal solution is
£(01010) = f(10) = 4000, while the final local optima found is S = (10000), starting from the solution SO = (10001)

12/45

Local Search — Neighbor Selection

Objective values

Neighbors /

Objective values ~ _.--"~ - 111 12 |iaaee First descent

ot BRI =
enerete
_______ Random descent

Current solution - Neighborhood

Selected neighbor

> Best improvement (steepest descent / ascent): the best neighbor (i.e.,
neighbor that improves the most the cost function) is selected

» First improvement: choosing the first improving neighbor that is better
than the current solution.

» Random selection: a random selection is applied to those neighbors
improving the current solution.

13/45

Local Search — Escaping Local Optima

One of the main disadvantages of local search is that it converges
toward local optima.

Local optima can be avoided via 4 main strategies:

» lterating from different initial solutions: as local search can be sensitive
to the initial solution

» Accepting non-improving neighbors: degrading the current solution for
moving out the basin of attraction of a given local optimum

» Changing the neighborhood: performed during the search

» Changing the objective function or the input data of the problem:
playing with the objective function and the constraints

14 /45

Local Search — Escaping Local Optima

Strategies for improving local search

Iterate with different Change landscape Accept nonimproving
solutions of the problem neighbors
Multistart Iterative local Simulated Tabu
local search search, GRASP annealing search
Change the objective function Use different
or the data input neighborhoods
Guided local Noisy method ~ Smoothing Variable neighborhood
search method search

15/45

Outline

» Optimization Problems
» Hill-Climbing

» Simulated Annealing
» Genetic Algorithms

16 /45

Hill-Climbing*

The hill-climbing search® algorithm (steepest-ascent’ version) is
simply a loop that continually moves in the direction of increasing
value—that is, uphill.
> does not maintain a search tree, so the data structure for the current
node need only record the state and the value of the objective function.

» does not look ahead beyond the immediate neighbors of the current state

function HILL-CLIMBING(problem) returns a state that is a local maximum

current < MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor «— a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current «<— neighbor

8
sometimes called greedy local search because it grabs a good neighbor state without thinking ahead about where to go next

vs. steepest-descent: a loop that continually moves in the direction of decreasing value—that is, downhill —
https://mathworld.wolfram.com/MethodofSteepestDescent.html

10
https://en.wikipedia.org/wiki/Hill_climbing
17/45

https://mathworld.wolfram.com/MethodofSteepestDescent.html
https://en.wikipedia.org/wiki/Hill_climbing

Hill-Climbing — 8-Queens, e.g.

Local search algorithms typically use a complete-state formulation,
where each state has 8-queens on the board, one per column.

» The successors of a state are all possible states generated by
moving a single queen to another square in the same column
(so each state has 8 x 7 = 56 successors).

The solution space size" s
n=8x8§
= 4,426,165, 368
(k: — 8)) b)
» vet, has only 92 feasible
solutions

1
combination — a selection of items from a collection, such that (unlike permutations) the order of selection does not matter ~» 1.1/ ki(n — k)!:
https://en.wikipedia.org/wiki/Combination

18/ 45

https://en.wikipedia.org/wiki/Combination

Hill-Climbing — 8-Queens, e.g.
The heuristic cost function h is the number of pairs of queens that
are attacking each other.

» The global minimum of this function is zero, which occurs only at perfect
solutions.

> (figure on the left) shows a state with h = 17. The figure also shows the
values of all its successors (obtained by moving a queen within its
column), with the best successors having h = 12.

> Takes 5 steps to reach the state (figure on the right), which has h = 1.

19/ 45

Hill-Climbing — 8-Queens, e.g.

not complete and not optimal

> starting from randomly generated 8-queen state, gets stuck
86% of the times

> gets stuck at local optima (below, h = 1 - check col. 4 and 7,
white diagonal - and every change will create a worse state)

20/45

Hill-Climbing — 8-Puzzle, e.g.

) . 12]s3 h(n)
A feasible solution (steps e 1s —
. 7(/6(5
partially shown) L
il o2 23
H . 12 4/8/316 8514
Using Manhattan distance 2pie =
as the heuristic function — J
the sum of the horizontal SETE 3
and vertical distances. 7] |6
T Ty
123 123
4/8(514 |4 [5]2
7.6 7 8|6
e
1]2]3 1|2(3 1, |3
45 1 4513 |4/2.5]3
7|86 7|86 7,86
—
1213 12
415 60 |4l5/3|2
7|8 7086

12
https://xlinux.nist.gov/dads/HTML/manhattanDistance.html

13
https://slideplayer.com/slide/14373368/

21/45

https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
https://slideplayer.com/slide/14373368/

Hill-Climbing — 8-Puzzle, e.g.

Search got stuck (steps

artially shown
als(sle —
Using Manhattan distance 6 |7
as the heuristic function —
. /
the sum of the horizontal \
)) 1|23 23
and vertical distances.
4(5/817 |45 5
6 7 6|7 8
2|3 112
516 |4(5(/3]6
678 6718

22/45

Outline

» Optimization Problems
» Hill-Climbing

» Simulated Annealing
» Genetic Algorithms

23/45

Simulated Annealing®

Annealing is a process in metallurgy where metals are slowly cooled
to make them reach a state of low energy where they are very
strong.
» Simulated annealing is an analogous method for
optimization.
» A version of stochastic hill climbing* where some downbhill
moves are allowed.
» The random movement corresponds to high temperature; at
low temperature, there is little randomness
» The temperature is reduced slowly, starting from a random
search at high temperature eventually becoming pure greedy
descent as it approaches zero temperature.

14
chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphill move —

https://en.wikipedia.org/wiki/Stochastic_hill_climbing

15
Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., 1983. Optimization by Simulated Annealing. Science, 220(4598), pp.671-680:
https://science.sciencemag.org/content/220/4598/671 — https://en.wikipedia.org/wiki/Simulated_annealing -
https://www.cs.ubc.ca/~poole/aibook/html/ArtInt_89.html - eg. simulated annealing optimization process:
https://en.wikipedia.org/wiki/Simulated_annealing#/media/File:Hill_Climbing_with_Simulated_Annealing.gif

24 /45

https://en.wikipedia.org/wiki/Stochastic_hill_climbing
https://science.sciencemag.org/content/220/4598/671
https://en.wikipedia.org/wiki/Simulated_annealing
https://www.cs.ubc.ca/~poole/aibook/html/ArtInt_89.html
https://en.wikipedia.org/wiki/Simulated_annealing##/media/File:Hill_Climbing_with_Simulated_Annealing.gif

Simulated Annealing

Physical System

Optimization Problem

System state
Molecular positions
Energy

Ground state
Metastable state
Rapid quenching
Temperature
Careful annealing

Solution

Decision variables
Objective function
Global optimal solution
Local optimum

Local search

Control parameter T
Simulated annealing

25/45

Simulated Annealing

Uses a control parameter, called temperature, to determine the
probability of accepting nonimproving solutions.

For a minimization problem:

A Objective

Higher probabilty
to accept the move

Lower probabilty
to accept the move X: initial solution
’ x": neighbor solution

’

X

>

»
>

Search space

26 /45

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL-STATE)
for t =1to oo do

T < schedule(t)

if T = 0 then return current

next «— a randomly selected successor of current

AFE «— next.VALUE — current.VALUE

if AE > 0 then current < next

else current — next only with probability e2£/T

27 /45

Simulated Annealing, e.g.

Let us maximize a continuous function:

f(z) = 23 — 6022 + 900z + 100

> A solution z is represented as a string of 5 bits.
» The neighborhood consists in flipping randomly a bit.

» The global maximum of this function is 01010 (x = 10,
f(z) = 4100).

For an initial solution of 10011 (f(19) = 2399)

28/45

Simulated Annealing, e.g. Scenario 1

1. p=e(-112/500) _ g g
2. p = e(247/405) _ (54
3. p=e("16/2952) _ (g5
4. ..

T = 500 and Initial Solution (10011)

T Move Solution f Af Move? New Neighbor Solution
500 1 00011 2287 112 Yes 00011
450 3 00111 3803 <0 Yes 00111
405 5 00110 3556 247 Yes 00110
364.5 2 01110 3684 <0 Yes 01110
328 4 01100 3998 <0 Yes 01100
295.2 3 01000 3972 16 Yes 01000
265.7 4 01010 4100 <0 Yes 01010
239.1 5 01011 4071 29 Yes 01011
215.2 1 11011 343 3728 No 01011

29/45

Simulated Annealing, e.g. Scenario 2

The initial temperature is not high enough and the algorithm gets
stuck by local optima.

T = 100 and Initial Solution (10011). When Temperature is not
High Enough, Algorithm Gets Stuck

T Move Solution f Af Move? New Neighbor Solution
100 1 00011 2287 112 No 10011
90 3 10111 1227 1172 No 10011
81 5 10010 2692 <0 Yes 10010
72.9 2 11010 516 2176 No 10010
65.6 4 10000 3236 <0 Yes 10000
59 3 10100 2100 1136 Yes 10000

30/45

Simulated Annealing

In addition to its common design issues such as the definition of
the neighborhood and the generation of the initial solution, the
main design issues are:
» Acceptance probability function: enables nonimproving
(worsening or equal) neighbors to be selected.
» Cooling schedule: defines the temperature at each step of the
algorithm.

31/45

Simulated Annealing — Cooling Schedules®

Different cooling schedules can be incorporated.

» Besides, adaptive schedules and reheating are also possible...

Temperature

0 100 200 300 400 500 600 700 800 900 1000
Iteration

16
image source: https://www.hindawi .com/journals/cin/2016/1712630/
32/45

https://www.hindawi.com/journals/cin/2016/1712630/

Outline

» Optimization Problems
» Hill-Climbing

» Simulated Annealing
» Genetic Algorithms

33/45

Genetic Algorithms*

A type of Evolutionary Algorithms (EAs)”, maintaining a
population of solutions instead of a single one.

Generate population

Replace population

17
https://en.wikipedia.org/wiki/Evolutionary_algorithm

18
https://en.wikipedia.org/wiki/Genetic_algorithm

34/45

https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Genetic_algorithm

Genetic Algorithms

Referring to the term genetic, population is a solution subset of
the whole solution space where each solution is represented by a
chromosome composed of genes.

1. Selection: determine parents to be used
for children (offsprings) reproduction

2. Genetic Operators
» Crossover: mixing and matching

Selection of better individuals |

Crossover, mutation

New population

parts of two (or more) parents to
form children

» Mutation: manipulating an
individual (chromosome)

3. Replacement: The new offsprings
compete with old individuals for their
place in the next generation (survival of
the fittest).

35/45

Genetic Algorithms — Selection

Individuals: 1 2 3 4 5 6 7
Fitness: 1 1 1 1515 3 3

Roulette wheel selection: assign to each individual a selection
probability that is proportional to its relative fitness.

> Let f; be the fitness of the individual p; in the population P

» The selection probability of p; is L
> =1 fi

36/45

Genetic Algorithms — Selection

Tournament selection: choose the best individual among &
randomly selected ones, w.r.t their qualities (fitness values)

> repeat the process to choose the required number of
individuals for crossover

Random

Best
------- DD D
Selected
@ individual
Contestants (k=3)

Population

37/45

Genetic Algorithms — Crossover

Parents

100111001001

1
011100100111

1
1 1
1
1001111001 010 1
1 1

1 1
011100100 1;11

1 1

' '

111111111111

000000000OO0OO

1-Point crossover

—>

2-Point crossover

—

Uniform crossover

—

Offsprings

1
100111000111

1

'
100111001001

']
1001001001101

' 1

! '
100411001001

100111000111

011000111000

38/45

Genetic Algorithms — Mutation”

Parent Offspring

L1 [s]af42]e]

Swap mutation

dE S EIEE

|
%’ Insertion mutation
E

[1]2]s]4]s]s]

L1 lsfafs]2]s]
Inversion mutation

L1]2[afs]s]e]

Displacement mutation

19
https://www.upress.uni-kassel.de/katalog/abstract_en.php?978-3-86219-551-0 - swap / exchange mutation: swap two randomly
selected genes; insertion mutation: one randomly selected gene is relocated; inversion mutation: reverse the order of the genes between two random points; displacement
mutation: choose two points randomly and relocate the genes as a group in-between - generalized version of the insertion mutation

39/45

https://www.upress.uni-kassel.de/katalog/abstract_en.php?978-3-86219-551-0

Genetic Algorithms®

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new_population < empty set
for i = 1 to SIZE(population) do
z < RANDOM-SELECTION(population, FITNESS-FN)
y < RANDOM-SELECTION(population, FITNESS-FN)
child — REPRODUCE(z, i)
if (small random probability) then child < MUTATE(child)
add child to new_population
population «— new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

function REPRODUCE(z, y) returns an individual
inputs: z, y, parent individuals

n «— LENGTH(z); ¢ < random number from 1 to n
return APPEND(SUBSTRING(z, 1, ¢), SUBSTRING(y, ¢ + 1,n))

in case of reproducing a single offspring with each crossover

40/45

Genetic Algorithms — 8-Queens?, e.g.

[32752411 | 32748552 |—~{ 327482 |
[24748552 [24752411 || 24752411 |
20 26% | 32752411 (32752124] 3222124]
1 1a% | 24415124 [24415411 —~] 24415417

(a) (b) (©) (d) (e)

Initial Population Fitness Function Selection Crossover Mutation

The 8-queens states corresponding to the first two parents in (c)
and the first offspring in (d).

» The shaded columns are lost in the crossover step and the unshaded
columns are retained.

21
fitness values are converted into parent selection probabilities in percentages, (b)

41/45

Genetic Algorithms — 8-Queens, e.g.

Solution representation is critical

» Crossover needs to return a well-formed solution

» What if binary representation is used: each queen position
requires 3 digits

42/45

	Optimization Problems
	Hill-Climbing
	Simulated Annealing
	Genetic Algorithms

	pbs@ARFix@1:
	pbs@ARFix@17:
	pbs@ARFix@27:
	pbs@ARFix@19:
	pbs@ARFix@36:
	pbs@ARFix@4:
	pbs@ARFix@30:
	pbs@ARFix@37:
	pbs@ARFix@41:
	pbs@ARFix@35:
	pbs@ARFix@21:
	pbs@ARFix@31:
	pbs@ARFix@40:
	pbs@ARFix@32:
	pbs@ARFix@20:
	pbs@ARFix@34:
	pbs@ARFix@14:
	pbs@ARFix@7:
	pbs@ARFix@23:
	pbs@ARFix@33:
	pbs@ARFix@15:
	pbs@ARFix@44:
	pbs@ARFix@13:
	pbs@ARFix@2:
	pbs@ARFix@24:
	pbs@ARFix@28:
	pbs@ARFix@12:
	pbs@ARFix@29:
	pbs@ARFix@9:
	pbs@ARFix@3:
	pbs@ARFix@6:
	pbs@ARFix@43:
	pbs@ARFix@25:
	pbs@ARFix@10:
	pbs@ARFix@8:
	pbs@ARFix@11:
	pbs@ARFix@39:
	pbs@ARFix@22:
	pbs@ARFix@26:
	pbs@ARFix@18:
	pbs@ARFix@16:
	pbs@ARFix@5:
	pbs@ARFix@38:
	pbs@ARFix@42:

