
COE206 – Principles of Artificial
Intelligence

Mustafa MISIR

Istinye University, Department of Computer Engineering

mustafa.misir@istinye.edu.tr

http://mustafamisir.github.io

http://memoryrlab.github.io

mustafa.misir@istinye.edu.tr
http://mustafamisir.github.io
http://memoryrlab.github.io


L4: Local Search1

1
https://en.wikipedia.org/wiki/Local_search_(optimization)

1 / 45

https://en.wikipedia.org/wiki/Local_search_(optimization)


Outline

I Optimization Problems

I Hill-Climbing

I Simulated Annealing

I Genetic Algorithms

2 / 45



Outline

I Optimization Problems

I Hill-Climbing

I Simulated Annealing

I Genetic Algorithms

3 / 45



Optimization Problems2

Finding the best state according to some objective function, e.g.

I timetable of classes (looks at clashes, awkward hours,
unsuitable rooms ...)

I route for a garbage collector truck (visiting all the bins
without driving around too much)

2
http://www.cs.nott.ac.uk/~psznza/G52PAS/lecture3.pdf

4 / 45

http://www.cs.nott.ac.uk/~psznza/G52PAS/lecture3.pdf


Optimization Problems – Iterative Improvement3

Often no clear goal test and path (or its cost) to solution does not
matter

In such cases, can use iterative improvement algorithms:

I keep a single current state, try to improve it

3
image source: https://en.wikipedia.org/wiki/Fitness_landscape

5 / 45

https://en.wikipedia.org/wiki/Fitness_landscape


Optimization Problems – Solution Space

Assuming the objective function gives a single numerical value, we
can plot solutions against this value;

I local search explore this landscape (location is the solution
and elevation is the objective function value)

I assuming the bigger the value of the function the better: we
are looking for the global maximum

Complete local search: finds a solution if it exists
Optimal local search: finds a global maximum

6 / 45



Optimization Problems – Landscape

A one-dimensional state-space landscape in which elevation
corresponds to the objective function.

I The aim is to find the global maximum.

7 / 45



Optimization Problems – Landscape

I Current state: a state where an agent is currently at.

I Global maximum: the best possible state of state space, with the highest
value of objective function.

I Local maximum: a state which is better than its neighbors, yet there is
one or more better states.

I Flat local maximum: a flat space where all the neighbors of a current
state have the same value.

I Shoulder: a plateau with an uphill edge.

8 / 45



Optimization Problems – Landscape4

4
graphics source: https://deap.readthedocs.io/en/master/api/benchmarks.html

9 / 45

https://deap.readthedocs.io/en/master/api/benchmarks.html


Optimization Problems – Traveling Salesman5, e.g.

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly
with thousands of cities

5
https://en.wikipedia.org/wiki/Travelling_salesman_problem

10 / 45

https://en.wikipedia.org/wiki/Travelling_salesman_problem


Optimization Problems – n-Queens6, e.g.

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

I Move a queen to reduce number of conflicts

I Heuristic h: number of attacks

Almost always solves n-queens problems instantaneously for very
large n, e.g., n = 1 million

6
https://en.wikipedia.org/wiki/Eight_queens_puzzle

11 / 45

https://en.wikipedia.org/wiki/Eight_queens_puzzle


Local Search7

A simple algorithm, starting at a given initial solution.

I At each iteration, the heuristic replaces the current solution
by a neighbor that improves the objective function

7
Metaheuristics: From Design to Implementation by El-Ghazali Talbi - 2009 Wiley: e.g. Local search process using a binary representation of solutions, a flip move

operator, and the best neighbor selection strategy. The objective function to maximize is x3 − 60x2
+ 900x. The global optimal solution is

f(01010) = f(10) = 4000, while the final local optima found is s = (10000), starting from the solution s0 = (10001).

12 / 45



Local Search – Neighbor Selection

I Best improvement (steepest descent / ascent): the best neighbor (i.e.,
neighbor that improves the most the cost function) is selected

I First improvement: choosing the first improving neighbor that is better
than the current solution.

I Random selection: a random selection is applied to those neighbors
improving the current solution.

13 / 45



Local Search – Escaping Local Optima

One of the main disadvantages of local search is that it converges
toward local optima.

Local optima can be avoided via 4 main strategies:
I Iterating from different initial solutions: as local search can be sensitive

to the initial solution

I Accepting non-improving neighbors: degrading the current solution for
moving out the basin of attraction of a given local optimum

I Changing the neighborhood: performed during the search

I Changing the objective function or the input data of the problem:
playing with the objective function and the constraints

14 / 45



Local Search – Escaping Local Optima

15 / 45



Outline

I Optimization Problems

I Hill-Climbing

I Simulated Annealing

I Genetic Algorithms

16 / 45



Hill-Climbing10

The hill-climbing search8 algorithm (steepest-ascent9 version) is
simply a loop that continually moves in the direction of increasing
value—that is, uphill.

I does not maintain a search tree, so the data structure for the current
node need only record the state and the value of the objective function.

I does not look ahead beyond the immediate neighbors of the current state

8
sometimes called greedy local search because it grabs a good neighbor state without thinking ahead about where to go next.

9
vs. steepest-descent: a loop that continually moves in the direction of decreasing value—that is, downhill –

https://mathworld.wolfram.com/MethodofSteepestDescent.html
10
https://en.wikipedia.org/wiki/Hill_climbing

17 / 45

https://mathworld.wolfram.com/MethodofSteepestDescent.html
https://en.wikipedia.org/wiki/Hill_climbing


Hill-Climbing – 8-Queens, e.g.

Local search algorithms typically use a complete-state formulation,
where each state has 8-queens on the board, one per column.

I The successors of a state are all possible states generated by
moving a single queen to another square in the same column
(so each state has 8× 7 = 56 successors).

The solution space size11 is(
n = 8× 8

k = 8

)
= 4, 426, 165, 368

I yet, has only 92 feasible
solutions

11
combination – a selection of items from a collection, such that (unlike permutations) the order of selection does not matter n!/k!(n − k)!:

https://en.wikipedia.org/wiki/Combination

18 / 45

https://en.wikipedia.org/wiki/Combination


Hill-Climbing – 8-Queens, e.g.

The heuristic cost function h is the number of pairs of queens that
are attacking each other.

I The global minimum of this function is zero, which occurs only at perfect
solutions.

I (figure on the left) shows a state with h = 17. The figure also shows the
values of all its successors (obtained by moving a queen within its
column), with the best successors having h = 12.

I Takes 5 steps to reach the state (figure on the right), which has h = 1.

19 / 45



Hill-Climbing – 8-Queens, e.g.

not complete and not optimal

I starting from randomly generated 8-queen state, gets stuck
86% of the times

I gets stuck at local optima (below, h = 1 - check col. 4 and 7,
white diagonal - and every change will create a worse state)

20 / 45



Hill-Climbing – 8-Puzzle13, e.g.

A feasible solution (steps
partially shown)

Using Manhattan distance12

as the heuristic function –
the sum of the horizontal
and vertical distances.

12
https://xlinux.nist.gov/dads/HTML/manhattanDistance.html

13
https://slideplayer.com/slide/14373368/

21 / 45

https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
https://slideplayer.com/slide/14373368/


Hill-Climbing – 8-Puzzle, e.g.

Search got stuck (steps
partially shown)

Using Manhattan distance
as the heuristic function –
the sum of the horizontal
and vertical distances.

22 / 45



Outline

I Optimization Problems

I Hill-Climbing

I Simulated Annealing

I Genetic Algorithms

23 / 45



Simulated Annealing15

Annealing is a process in metallurgy where metals are slowly cooled
to make them reach a state of low energy where they are very
strong.

I Simulated annealing is an analogous method for
optimization.

I A version of stochastic hill climbing14 where some downhill
moves are allowed.

I The random movement corresponds to high temperature; at
low temperature, there is little randomness

I The temperature is reduced slowly, starting from a random
search at high temperature eventually becoming pure greedy
descent as it approaches zero temperature.

14
chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphill move –

https://en.wikipedia.org/wiki/Stochastic_hill_climbing
15

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., 1983. Optimization by Simulated Annealing. Science, 220(4598), pp.671-680:
https://science.sciencemag.org/content/220/4598/671 — https://en.wikipedia.org/wiki/Simulated_annealing –
https://www.cs.ubc.ca/~poole/aibook/html/ArtInt_89.html – e.g. simulated annealing optimization process:
https://en.wikipedia.org/wiki/Simulated_annealing#/media/File:Hill_Climbing_with_Simulated_Annealing.gif

24 / 45

https://en.wikipedia.org/wiki/Stochastic_hill_climbing
https://science.sciencemag.org/content/220/4598/671
https://en.wikipedia.org/wiki/Simulated_annealing
https://www.cs.ubc.ca/~poole/aibook/html/ArtInt_89.html
https://en.wikipedia.org/wiki/Simulated_annealing##/media/File:Hill_Climbing_with_Simulated_Annealing.gif


Simulated Annealing

25 / 45



Simulated Annealing

Uses a control parameter, called temperature, to determine the
probability of accepting nonimproving solutions.

For a minimization problem:

26 / 45



Simulated Annealing

27 / 45



Simulated Annealing, e.g.

Let us maximize a continuous function:

f(x) = x3 − 60x2 + 900x+ 100

I A solution x is represented as a string of 5 bits.

I The neighborhood consists in flipping randomly a bit.

I The global maximum of this function is 01010 (x = 10,
f(x) = 4100).

For an initial solution of 10011 (f(19) = 2399)

28 / 45



Simulated Annealing, e.g. Scenario 1

1. p = e(−112/500) = 0.80

2. p = e(−247/405) = 0.54

3. p = e(−16/295.2) = 0.95

4. ...

29 / 45



Simulated Annealing, e.g. Scenario 2

The initial temperature is not high enough and the algorithm gets
stuck by local optima.

30 / 45



Simulated Annealing

In addition to its common design issues such as the definition of
the neighborhood and the generation of the initial solution, the
main design issues are:

I Acceptance probability function: enables nonimproving
(worsening or equal) neighbors to be selected.

I Cooling schedule: defines the temperature at each step of the
algorithm.

31 / 45



Simulated Annealing – Cooling Schedules16

Different cooling schedules can be incorporated.

I Besides, adaptive schedules and reheating are also possible...

16
image source: https://www.hindawi.com/journals/cin/2016/1712630/

32 / 45

https://www.hindawi.com/journals/cin/2016/1712630/


Outline

I Optimization Problems

I Hill-Climbing

I Simulated Annealing

I Genetic Algorithms

33 / 45



Genetic Algorithms18

A type of Evolutionary Algorithms (EAs)17, maintaining a
population of solutions instead of a single one.

17
https://en.wikipedia.org/wiki/Evolutionary_algorithm

18
https://en.wikipedia.org/wiki/Genetic_algorithm

34 / 45

https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Genetic_algorithm


Genetic Algorithms

Referring to the term genetic, population is a solution subset of
the whole solution space where each solution is represented by a
chromosome composed of genes.

1. Selection: determine parents to be used
for children (offsprings) reproduction

2. Genetic Operators

I Crossover: mixing and matching
parts of two (or more) parents to
form children

I Mutation: manipulating an
individual (chromosome)

3. Replacement: The new offsprings
compete with old individuals for their
place in the next generation (survival of
the fittest).

35 / 45



Genetic Algorithms – Selection

Roulette wheel selection: assign to each individual a selection
probability that is proportional to its relative fitness.

I Let fi be the fitness of the individual pi in the population P

I The selection probability of pi is fi∑n
j=1 fi

36 / 45



Genetic Algorithms – Selection

Tournament selection: choose the best individual among k
randomly selected ones, w.r.t their qualities (fitness values)

I repeat the process to choose the required number of
individuals for crossover

37 / 45



Genetic Algorithms – Crossover

38 / 45



Genetic Algorithms – Mutation19

19
https://www.upress.uni-kassel.de/katalog/abstract_en.php?978-3-86219-551-0 – swap / exchange mutation: swap two randomly

selected genes; insertion mutation: one randomly selected gene is relocated; inversion mutation: reverse the order of the genes between two random points; displacement
mutation: choose two points randomly and relocate the genes as a group in-between - generalized version of the insertion mutation

39 / 45

https://www.upress.uni-kassel.de/katalog/abstract_en.php?978-3-86219-551-0


Genetic Algorithms20

20
in case of reproducing a single offspring with each crossover

40 / 45



Genetic Algorithms – 8-Queens21, e.g.

The 8-queens states corresponding to the first two parents in (c)
and the first offspring in (d).

I The shaded columns are lost in the crossover step and the unshaded
columns are retained.

21
fitness values are converted into parent selection probabilities in percentages, (b)

41 / 45



Genetic Algorithms – 8-Queens, e.g.

Solution representation is critical

I Crossover needs to return a well-formed solution

I What if binary representation is used: each queen position
requires 3 digits

42 / 45




	Optimization Problems
	Hill-Climbing
	Simulated Annealing
	Genetic Algorithms

	pbs@ARFix@1: 
	pbs@ARFix@17: 
	pbs@ARFix@27: 
	pbs@ARFix@19: 
	pbs@ARFix@36: 
	pbs@ARFix@4: 
	pbs@ARFix@30: 
	pbs@ARFix@37: 
	pbs@ARFix@41: 
	pbs@ARFix@35: 
	pbs@ARFix@21: 
	pbs@ARFix@31: 
	pbs@ARFix@40: 
	pbs@ARFix@32: 
	pbs@ARFix@20: 
	pbs@ARFix@34: 
	pbs@ARFix@14: 
	pbs@ARFix@7: 
	pbs@ARFix@23: 
	pbs@ARFix@33: 
	pbs@ARFix@15: 
	pbs@ARFix@44: 
	pbs@ARFix@13: 
	pbs@ARFix@2: 
	pbs@ARFix@24: 
	pbs@ARFix@28: 
	pbs@ARFix@12: 
	pbs@ARFix@29: 
	pbs@ARFix@9: 
	pbs@ARFix@3: 
	pbs@ARFix@6: 
	pbs@ARFix@43: 
	pbs@ARFix@25: 
	pbs@ARFix@10: 
	pbs@ARFix@8: 
	pbs@ARFix@11: 
	pbs@ARFix@39: 
	pbs@ARFix@22: 
	pbs@ARFix@26: 
	pbs@ARFix@18: 
	pbs@ARFix@16: 
	pbs@ARFix@5: 
	pbs@ARFix@38: 
	pbs@ARFix@42: 


