COE206 — Principles of Artificial

Intelligence

Mustafa MISIR
Istinye University, Department of Computer Engineering
mustafa.misir@istinye.edu.tr

http://mustafamisir.github.io
http://memoryrlab.github.io

- ARTIFICIAL INTELLIGENCE
IN MEDICINE RESEARCH CENTER

ISTINYE UNIVERSITY

mustafa.misir@istinye.edu.tr
http://mustafamisir.github.io
http://memoryrlab.github.io

L3-2: Problem Solving by
Search

Informed (Heuristic) Search

Informed Search

An informed search strategy—one that uses problem-specific
knowledge beyond the definition of the problem itself—can find
solutions more efficiently than an uninformed strategy.

» operating thorough an evaluation function, f(n)

The general approach we consider is called best-first search'.

» f(n) is constructed as a cost estimate, so the node with the
lowest evaluation is expanded first.

» f(n) tends to utilize a heuristic function, e.g. h(n) =
estimated cost of the cheapest path from the state at node n
to a goal state.

1
https://en.wikipedia.org/wiki/Best-first_search

2/33

https://en.wikipedia.org/wiki/Best-first_search

Outline

» Greedy Best-First Search
> A* Search

» Heuristic Functions

3/33

Greedy Best-first Search

Expand the node that is closest to the goal, likely to lead to a
solution quickly.

P evaluates nodes by using just the heuristic function, i.e.

f(n) = h(n)

4/33

Greedy Best-first Search — Straight-line Distance Heuristic

If the goal is Bucharest, we need to know the straight-line

distances to Bucharest.

[] Hirsova
[] Mehadia

Dobreta []

L craiova Eforie
[] Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Tasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

5/33

(a) The initial state

(b) After expanding Arad

253 329 374

(c) After expanding Sibiu

(d) After expanding Fagaras

6/33

Greedy Best-first Search — Properties

» Completeness’: No — can get stuck in loops; e.g. getting from lasi to
Fagaras: Neamt is expanded first because it is closest (straight-line) to
Fagaras, but it is a dead end.

» Time Complexity’: O(b™)
»> Space Complexity': O(b™)
» Optimality’: No

%ls the algorithm guaranteed to find a solution when there is one?
® How long does it take to find a solution?

* How much memory is needed to perform the search?

® Does the strategy find the optimal solution?

7/33

A* Search

The most widely known form of best-first search is called A*
search.

» It evaluates nodes by combining g(n), the cost to reach the
node, and h(n), the cost to get from the node to the goal:

f(n) = g(n) + h(n)

Since g(n) gives the path cost from the start node to node n, and
h(n) is the estimated cost of the cheapest path from n to the goal,
we have

f(n) = estimated cost of the cheapest solution through n

The algorithm is identical to Uniform-Cost Search (UCS) except
that A* uses g + h instead of g.

8/33

A* Search

The h values are the straight-line distances to Bucharest

(a) The initial state (e) After expanding Fagaras

(b) After expanding Arad

447=118+320 4492754374

393=140+253 44721184329 449=754374 Prvacrrver ey

591=3384253 450=45040 526=366+160 417=317+100 553=300+253

(c) After expanding Sibiu

Q (f) After expanding Pitesti
Pre=yrre Pz

6462801366 415-239+176 671=2914380 4132204193
250 ! 4176 671=291 04 ! 447=118+329 449=75+374

(d) After expanding Rimnicu Vilcea
646-200+366

526=366+160, 3533004253

447=1184329 449=754374 51=338+253 450=450+0

B q
646=2804366 415=239+176 6712914380 418=41840 615=455+160 607=414+193

526=366+160 417=317+100 5533004253

9/33

A* Search — Optimality (Admissibility)

An admissible heuristic is one that never overestimates the cost to
reach the goal (always less than or equal to the actual cost).

h(n) < h*(n) where h*(n) is the true cost from n

Admissible heuristics are by nature optimistic because they think
the cost of solving the problem is less than it actually is.

10/33

A* Search — Optimality (Consistency)

A heuristic h(n) is consistent (monotone) if

h(n) < c(n,a,n’) + h(n')

Triangle inequality, a side of a triangle can-
not be longer than the sum of the other two

sides.

A consistent heuristic® is also admissible.

6
https://en.wikipedia.org/wiki/Consistent_heuristic

11/33

https://en.wikipedia.org/wiki/Consistent_heuristic

A* Search — Optimality (Consistency)
Define two nodes, n and n’, where n’ is a successor of n;
g(n’) = g(n) + ¢(n,a,n’) considering that n’ is a successor of n

and h(n) < ¢(n,a,n’) + h(n')

If h is consistent, we have

f(n) = g(n') + h(n/
= g(n) + c(n,a,n') + h(n')
> g(n) + h(n)
= f(n)

As f(n’) > f(n), the values of f(n) are monotonically
non-decreasing along that path

12/33

A* Search — Optimality
With a monotonic heuristic, we can interpret A* as searching
through contours.

» Showing contours at f = 380, f = 400, and f = 420, with Arad as the
start state.

» Nodes inside a given contour have f-costs less than or equal to the
contour value.

13/33

A* Search, e.g. Graph Search’

Underscore values in the nodes refer to the estimated distance to
one of the goal states from the current node, i.e. h(n)

7
A* search example by John Levine (U. Strathclyde): https://www.youtube. com/watch?v=6TsLIENAZCo
14/33

https://www.youtube.com/watch?v=6TsL96NAZCo

A* Search — Properties

» Completeness’: Yes
» Time Complexity’: Exponential (depending on the heuristic function)
» Space Complexity”: Keeps all the nodes in memory

> Optimality": Yes

8
Is the algorithm guaranteed to find a solution when there is one?
9
How long does it take to find a solution?
How much memory is needed to perform the search?

11
Does the strategy find the optimal solution?

15/33

Heuristic Functions — 8-Puzzle

The objective is to slide the tiles horizontally or vertically into the
empty space until the configuration matches the goal configuration

A solution with 26 steps long:

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

16/33

Heuristic Functions — 8-Puzzle*

2 heuristic function suggestions for A* search:
» hi: the number of misplaced tiles
» admissible as it is clear that any tile that is out of place must
be moved at least once, i.e. hamming distance®

» hgy: the sum of the distances (horizontal and vertical) of the
tiles from their goal positions, i.e. Manhattan distance®
» admissible as all any move can do is move one tile one step
closer to the goal.

‘Golang’

‘Gopher”

12
https://en.wikipedia.org/wiki/Hamming_distance

13
https://en.wikipedia.org/wiki/Taxicab_geometry
14
image source: https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785882104/6/
ch061v11isecd0/measuring-distance-or-similarity

17/33

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785882104/6/ch06lvl1sec40/measuring-distance-or-similarity
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785882104/6/ch06lvl1sec40/measuring-distance-or-similarity

Heuristic Functions — 8-Puzzle

Ll
a
o Jfo 0fs]

Start State Goal State

For the given example with the solution of 26 steps long®:
> h; =8, as all the tiles are misplaced at the start state

> ho=34+1+2+2+4+2+ 343+ 2 =18, considering the
number of moves to the goal state as the distance

Due to admissibility, neither of these overestimates the true
solution cost, which is 26.

15
h, = 18 is closer to 26 than h, = 8

18/33

Heuristic Functions — Accuracy on Performance”

One way to characterize the quality of a heuristic is the effective
branching factor” b*.
» If the total number of nodes generated by A™ for a particular problem is
N and the solution depth is d,

» then b" is the branching factor that a uniform tree of depth d would have
to have in order to contain N 4 1 nodes.

N+1=14+b0"4+0)+...4+ 0"
==/ -0

e.g. if A™ finds a solution at depth 5 using 52 nodes, the effective branching
factor is 1.92.

» The effective branching factor can vary across problem instances, but
usually it is fairly constant for sufficiently hard problems.

16
the number of successors generated by a typical node for a given search problem
http://ozark. hendrlx edu/~ ferrer/courses/SSS/f11/1ectures/effect1ve branching.html

7
the sum of the geometric progres ies: https://en.wikipedia.org/wiki/Geometric_progression

19/33

http://ozark.hendrix.edu/~ferrer/courses/335/f11/lectures/effective-branching.html
https://en.wikipedia.org/wiki/Geometric_progression

Heuristic Functions — Accuracy on Performance

Average performances of iterative deepening search (IDS) and
with A* tree search using both hy and hy on 100 randomly

generated problems

> h9 is better® than hy, and A* is far better than IDS.

Search Cost (nodes generated) Effective Branching Factor

d IDS Af(hy) A(hg) IDS A*(hy) A(hg)
2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 || 3644035 227 73 2.78 1.42 1.24
14 - 539 113 - 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

8
as expected from the earlier calculation of the solution with the step size 26, where h; = 8 and h, = 18 — for this specific example F2., is more reasonable

since hy < h, < h*

20/33

	Greedy Best-first Search
	A* Search
	Heuristic Functions

	pbs@ARFix@13:
	pbs@ARFix@9:
	pbs@ARFix@1:
	pbs@ARFix@19:
	pbs@ARFix@17:
	pbs@ARFix@8:
	pbs@ARFix@18:
	pbs@ARFix@11:
	pbs@ARFix@4:
	pbs@ARFix@7:
	pbs@ARFix@16:
	pbs@ARFix@15:
	pbs@ARFix@5:
	pbs@ARFix@20:
	pbs@ARFix@12:
	pbs@ARFix@3:
	pbs@ARFix@6:
	pbs@ARFix@10:
	pbs@ARFix@2:
	pbs@ARFix@14:
	pbs@ARFix@22:
	pbs@ARFix@21:

