
COE206 – Principles of Artificial
Intelligence

Mustafa MISIR

Istinye University, Department of Computer Engineering

mustafa.misir@istinye.edu.tr

http://mustafamisir.github.io

http://memoryrlab.github.io

mustafa.misir@istinye.edu.tr
http://mustafamisir.github.io
http://memoryrlab.github.io


L3-2: Problem Solving by
Search

Informed (Heuristic) Search

1 / 33



Informed Search

An informed search strategy—one that uses problem-specific
knowledge beyond the definition of the problem itself—can find
solutions more efficiently than an uninformed strategy.

I operating thorough an evaluation function, f(n)

The general approach we consider is called best-first search1.

I f(n) is constructed as a cost estimate, so the node with the
lowest evaluation is expanded first.

I f(n) tends to utilize a heuristic function, e.g. h(n) =
estimated cost of the cheapest path from the state at node n
to a goal state.

1
https://en.wikipedia.org/wiki/Best-first_search

2 / 33

https://en.wikipedia.org/wiki/Best-first_search


Outline

I Greedy Best-First Search

I A∗ Search

I Heuristic Functions

3 / 33



Greedy Best-first Search

Expand the node that is closest to the goal, likely to lead to a
solution quickly.

I evaluates nodes by using just the heuristic function, i.e.
f(n) = h(n)

4 / 33



Greedy Best-first Search – Straight-line Distance Heuristic

If the goal is Bucharest, we need to know the straight-line
distances to Bucharest.

5 / 33



6 / 33



Greedy Best-first Search – Properties

I Completeness2: No – can get stuck in loops; e.g. getting from Iasi to
Fagaras: Neamt is expanded first because it is closest (straight-line) to
Fagaras, but it is a dead end.

I Time Complexity3: O(bm)

I Space Complexity4: O(bm)

I Optimality5: No

2
Is the algorithm guaranteed to find a solution when there is one?

3
How long does it take to find a solution?

4
How much memory is needed to perform the search?

5
Does the strategy find the optimal solution?

7 / 33



A∗ Search

The most widely known form of best-first search is called A∗

search.

I It evaluates nodes by combining g(n), the cost to reach the
node, and h(n), the cost to get from the node to the goal:

f(n) = g(n) + h(n)

Since g(n) gives the path cost from the start node to node n, and
h(n) is the estimated cost of the cheapest path from n to the goal,
we have

f(n) = estimated cost of the cheapest solution through n

The algorithm is identical to Uniform-Cost Search (UCS) except
that A∗ uses g + h instead of g.

8 / 33



A∗ Search

The h values are the straight-line distances to Bucharest

9 / 33



A∗ Search – Optimality (Admissibility)

An admissible heuristic is one that never overestimates the cost to
reach the goal (always less than or equal to the actual cost).

h(n) ≤ h∗(n) where h∗(n) is the true cost from n

Admissible heuristics are by nature optimistic because they think
the cost of solving the problem is less than it actually is.

10 / 33



A∗ Search – Optimality (Consistency)

A heuristic h(n) is consistent (monotone) if

h(n) ≤ c(n, a, n′) + h(n′)

Triangle inequality, a side of a triangle can-
not be longer than the sum of the other two
sides.

A consistent heuristic6 is also admissible.

6
https://en.wikipedia.org/wiki/Consistent_heuristic

11 / 33

https://en.wikipedia.org/wiki/Consistent_heuristic


A∗ Search – Optimality (Consistency)

Define two nodes, n and n′, where n′ is a successor of n;
g(n′) = g(n) + c(n, a, n′) considering that n′ is a successor of n
and h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

As f(n′) ≥ f(n), the values of f(n) are monotonically
non-decreasing along that path

12 / 33



A∗ Search – Optimality
With a monotonic heuristic, we can interpret A* as searching
through contours.

I Showing contours at f = 380, f = 400, and f = 420, with Arad as the
start state.

I Nodes inside a given contour have f -costs less than or equal to the
contour value.

13 / 33



A∗ Search, e.g. Graph Search7

Underscore values in the nodes refer to the estimated distance to
one of the goal states from the current node, i.e. h(n)

7
A∗ search example by John Levine (U. Strathclyde): https://www.youtube.com/watch?v=6TsL96NAZCo

14 / 33

https://www.youtube.com/watch?v=6TsL96NAZCo


A∗ Search – Properties

I Completeness8: Yes

I Time Complexity9: Exponential (depending on the heuristic function)

I Space Complexity10: Keeps all the nodes in memory

I Optimality11: Yes

8
Is the algorithm guaranteed to find a solution when there is one?

9
How long does it take to find a solution?

10
How much memory is needed to perform the search?

11
Does the strategy find the optimal solution?

15 / 33



Heuristic Functions – 8-Puzzle

The objective is to slide the tiles horizontally or vertically into the
empty space until the configuration matches the goal configuration

A solution with 26 steps long:

16 / 33



Heuristic Functions – 8-Puzzle14

2 heuristic function suggestions for A∗ search:
I h1: the number of misplaced tiles

I admissible as it is clear that any tile that is out of place must
be moved at least once, i.e. hamming distance12

I h2: the sum of the distances (horizontal and vertical) of the
tiles from their goal positions, i.e. Manhattan distance13

I admissible as all any move can do is move one tile one step
closer to the goal.

12
https://en.wikipedia.org/wiki/Hamming_distance

13
https://en.wikipedia.org/wiki/Taxicab_geometry

14
image source: https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785882104/6/

ch06lvl1sec40/measuring-distance-or-similarity

17 / 33

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785882104/6/ch06lvl1sec40/measuring-distance-or-similarity
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785882104/6/ch06lvl1sec40/measuring-distance-or-similarity


Heuristic Functions – 8-Puzzle

For the given example with the solution of 26 steps long15:

I h1 = 8, as all the tiles are misplaced at the start state

I h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18, considering the
number of moves to the goal state as the distance

Due to admissibility, neither of these overestimates the true
solution cost, which is 26.

15
h2 = 18 is closer to 26 than h1 = 8

18 / 33



Heuristic Functions – Accuracy on Performance17

One way to characterize the quality of a heuristic is the effective
branching factor16 b∗.

I If the total number of nodes generated by A∗ for a particular problem is
N and the solution depth is d,

I then b∗ is the branching factor that a uniform tree of depth d would have
to have in order to contain N + 1 nodes.

N + 1 = 1 + b∗ + (b∗)2 + . . .+ (b∗)d

= (1− (b∗)n+1)/(1− b∗)

e.g. if A∗ finds a solution at depth 5 using 52 nodes, the effective branching
factor is 1.92.

I The effective branching factor can vary across problem instances, but
usually it is fairly constant for sufficiently hard problems.

16
the number of successors generated by a typical node for a given search problem:

http://ozark.hendrix.edu/~ferrer/courses/335/f11/lectures/effective-branching.html
17

the sum of the geometric progression series: https://en.wikipedia.org/wiki/Geometric_progression

19 / 33

http://ozark.hendrix.edu/~ferrer/courses/335/f11/lectures/effective-branching.html
https://en.wikipedia.org/wiki/Geometric_progression


Heuristic Functions – Accuracy on Performance

Average performances of iterative deepening search (IDS) and
with A∗ tree search using both h1 and h2 on 100 randomly
generated problems

I h2 is better18 than h1, and A∗ is far better than IDS.

18
as expected from the earlier calculation of the solution with the step size 26, where h1 = 8 and h2 = 18 – for this specific example h2 is more reasonable

since h1 < h2 < h∗

20 / 33




	Greedy Best-first Search
	A* Search
	Heuristic Functions

	pbs@ARFix@13: 
	pbs@ARFix@9: 
	pbs@ARFix@1: 
	pbs@ARFix@19: 
	pbs@ARFix@17: 
	pbs@ARFix@8: 
	pbs@ARFix@18: 
	pbs@ARFix@11: 
	pbs@ARFix@4: 
	pbs@ARFix@7: 
	pbs@ARFix@16: 
	pbs@ARFix@15: 
	pbs@ARFix@5: 
	pbs@ARFix@20: 
	pbs@ARFix@12: 
	pbs@ARFix@3: 
	pbs@ARFix@6: 
	pbs@ARFix@10: 
	pbs@ARFix@2: 
	pbs@ARFix@14: 
	pbs@ARFix@22: 
	pbs@ARFix@21: 


